В одной этой фразе содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения».
Эти слова принадлежат Ричарду Фейнману, нашему современнику, Нобелевскому лауреату 1965 года по физике. И хотя они почти дословно повторяют Демокрита, понятия и образы, которые мы с этими словами связываем теперь, совсем другие: за 25 столетий об атоме узнали много нового.
Это было не просто — просты только результаты науки, и они не зависят от личности исследователя — в этом их ценность.
ВОКРУГ КВАНТА
АТОМЫ И ПУСТОТА
Даже люди, легко гнущие подковы, признают, что атомы твердые: в детстве им ведь тоже приходилось расшибать коленки об углы. Поэтому очень трудно представить себе атом таким же пустым, как пространство между Землей и Солнцем, и в то же время необычайно устойчивым.
Известно, например, что вода останется водой даже под давлением в 10 тыс. атмосфер. Это очень большое давление: так примерно будет давить слон, если его поставить на площадку в 1 кв. см. Легко подсчитать, что при таком давлении на каждый атом действует сила примерно 10-9 г, то есть в 100 миллионов миллионов (1014) раз превышающая его собственный вес (10-23 г). Это все равно как если бы на того же слона взгромоздить сотню Джомолунгм.
Все это удивительно, но не мешает атомам быть пустыми, поразительно пустыми: все ядра атомов, из которых построена Джомолунгма, можно упаковать в один мешок.
ДИФРАКЦИОННАЯ РЕШЕТКА
Неизвестно, как обернулась бы история атома, если бы физики не изобрели дифракционную решетку.
Ее использовал уже Фраунгофер; Ангстрем сделал ее главным инструментом своих исследований, и наконец Роулэнд придал ей почти современную форму. Принцип действия решетки основан на явлении дифракции, то есть на способности волн огибать препятствие, если оно сравнимо с их длиной. Волны различной длины огибают препятствие по-разному, что позволяет разделить их и точно измерить.
Благодаря этому прибору в спектроскопии достигнуты точности измерений, удивительные даже для физики. Уже в начале века удавалось разделить две линии в видимом спектре, если их длины волн отличались друг от друга хотя бы на 10-3 Ǻ (сейчас точность повышена до 10-4 Ǻ).
Чтобы наглядно представить себе точность подобных измерений, вообразите, что вы захотели измерить длину экватора с точностью до метра. Ясно, что в этой попытке нет нужды, да и особого смысла тоже, просто потому, что результат такого измерения будет зависеть от каждого муравейника на пути. Но в спектроскопии подобные усилия представляют не только спортивный интерес; и дальнейшая история атома убедительно это доказала — вопреки недоверию и насмешкам, которые эти усилия подчас сопровождали. Тому подтверждением — судьба эталона метра.
Знаменитый платино-иридиевый стержень с двумя рисками, отлитый по решению Конвента и хранящийся под стеклянным колпаком в Международном бюро мер и весов в Севре близ Парижа, оказался неравным в точности одной сорокамиллионной доле земного меридиана, как это вначале предполагали.
Французский академик Жак Бабине (1794–1872) был одним из первых, кто высказал сомнение в целесообразности такого выбора эталона длины и предложил принять за эталон длину волны какой-либо спектральной линии «…как величину, абсолютно неизменную и независимую даже от космических переворотов». Его предложение приняли только в 1958 году, когда был узаконен новый эталон метра: длина, на которой укладывается 1 650 763,73 длины волны оранжевой линии криптона Кr-86 в вакууме.
ЧТО СДЕЛАЛ РЕЗЕРФОРД?
В начале века мысли о планетарном строении атома не были такой редкостью, как это принято сейчас думать. Эти мысли открыто излагались даже на страницах учебников.
Для примера приведем несколько выдержек из III тома курса электричества, изданного в 1908 году профессором Парижского университета Г. Пелла:
«…атом не является неделимой частичкой материи. Испускание света, дающего спектральные линии, характерные для каждого рода атомов, указывает уже на разнородность атомов. Можно было бы предположить, что атом состоит из очень большого числа корпускул, которые притягиваются к какому-нибудь центру, как планеты притягиваются к Солнцу.