Выбрать главу

Cо временем к свойствам света настолько привыкли, что они превратились в некий эталон для всех вообще волновых процессов. Теперь, если в каком-либо процессе замечали вдруг явления интерференции и дифракции, то уже не сомневались в его волновой природе. Потому, собственно, все сразу и признали гипотезу де Бройля о волнах материи, увидев первые снимки дифракции электронов.

Взгляните на три почти одинаковые фотографии на странице 164: слева — дифракция видимого света, справа — дифракция электронов, внизу — волны на воде. Глядя на них, не поверить в волновую природу электрона очень трудно. Для нынешнего поколения физиков это уже не вопрос веры, а факт точного знания и даже средство для технических приложений.

В стройной теории волновой оптики оставалась одна неувязка: луч света мы воспринимаем все-таки как луч, а не как волну. Как объяснить такой факт с точки зрения волновой оптики? Задачу решил Огюстен Жан Френель, и его объяснение можно найти теперь в любом учебнике физики.

Оказывается, при интерференции все волны от источника света гасят друг друга, кроме тех, которые находятся внутри узкого канала толщиной в половину длины волны света. (Для видимого света толщина канала λ/2 Ǻ 3 10-5 см.) Если мы пренебрежем толщиной «светового канала», то получим ту самую траекторию светового луча, к которой все мы привыкли в обычной жизни.

Известен даже способ ее построения: сначала нужно провести линии через все гребни волн — как говорят в физике, отметить фронт волны. А затем от источника света провести линию, которая перпендикулярна к фронту волны. Это и будет траектория светового луча. Если вблизи препятствия фронт волны искажается, то одновременно с этим искривляется и траектория луча — луч света огибает препятствие, происходит, дифракция.

Траектория светового луча

В 1834 году Уильям Роуан Гамильтон (1805–1865), знаменитый профессор астрономии в Дублинском университете, занимался непонятной для современников задачей. Он хотел доказать, что формальная аналогия между траекторией движения частицы и траекторией светового луча имеет строгий математический смысл.

Мы уже знаем: в физике понятию закона движения соответствуют формулы — уравнения движения. Для волн и частиц они совершенно различны: решая одни, мы вычисляем траекторию частицы, решая другие, находим форму и скорость фронта волны. Но мы также знаем, что в оптике можно нарисовать траекторию светового луча, зная движение фронта его волны.

Траектория частицы

Гамильтон доказал, что в механике можно сделать нечто противоположное: заменить траекторию частицы движением фронта некоторой волны. Или более точно: уравнения движения механики можно записать в таком виде, что они полностью совпадут с уравнениями геометрической оптики, которые описывают распространение луча света без учета его волновых свойств. Тем самым Гамильтон доказал оптико-механическую аналогию: движение частицы по траектории можно представить как распространение луча света без учета его волновых свойств.

ВОЛНОВАЯ МЕХАНИКА ШРЕДИНГЕРА

Эрвин Шредингер (1887–1961) в 1911 году окончил Венский университет, где были еще живы традиции Доплера, Физо, Больцмана и весь дух классических времен физики: основательность при изучении явлений и неторопливый к ним интерес. В 1925 году это был уже немолодой профессор Цюрихского университета, сохранивший, однако, юношеское стремление понять самое главное в тогдашней физике: «Как устроен атом? И как в нем движутся электроны?»

В конце 1925 года в одной из статей Эйнштейна Шредингер прочел несколько слов похвалы в адрес де Бройля и его гипотезы. Этих немногих сведений ему оказалось достаточно, чтобы поверить в гипотезу де Бройля о волнах материи и развить ее до логического конца (что всегда трудно, и не только в науке).

Ход его рассуждений легко понять, по крайней мере, теперь, почти полвека спустя. Прежде всего, он вспомнил оптико-механическую аналогию Гамильтона. Он знал, что она доказана лишь в пределе геометрической оптики — тогда, когда можно пренебречь волновыми свойствами света. Шредингер пошел дальше и предположил: оптико-механическая аналогия остается справедливой также и в случае волновой оптики. Это означает, что всегда любое движение частиц подобно явлению распространения волн.