ПРИЗНАКИ ТУРБУЛЕНТНОСТИ
Турбулентность можно увидеть, находясь на земле. Любое быстрое изменение скорости или направления движения воздуха является указателем турбулентности. Каждый пилот должен знать максимальные параметры турбулентности, допустимые для его летательного аппарата, да еще с учетом его индивидуального мастерства. Например, примем ограничение изменения скорости и направления ветра на 2 м/с и 45° за 3 секунды. Если изменения больше, или такие, но за меньший промежуток времени, то вам лучше подождать более подходящую погоду.
Любые гибкие объекты, которые могут служить указателями ветра, такие, как: деревья, поля злаковых, высокая трава, водяные пространства, флаги и ветроуказатели можно использовать для определения интенсивности турбулентности. Идеальным детектором турбулентности является дым, как показано на рисунке 104.
Рис. 104. Дым как индикатор турбулентности.
Как отмечалось в главе 3 определенные типы облаков также хорошо указывают на турбулентность. Кучевые облака очень часто связаны с термиками и, следовательно, с термической турбулентностью. На интенсивность турбулентности частично указывают вертикальное развитие и скорость роста облаков, связанные с термической активностью. Турбулентность среза также можно определить по типу облаков.
Слоистые облака часто находятся в инверсионном слое. А граница слоя инверсии с более холодным воздухом является зоной турбулентности среза. Billow облака, которые рассматриваются выше (рис. 34), указывают на срез потоков. Часто они возникают по причине прихода теплого фронта и обычно выше уровня полетов спортивных аппаратов (5000 м и более). Последний тип облаков, который может помочь определить наличие турбулентности, — это волновые облака (рис. 33). Сильные роторы часто соседствуют с волнами, поэтому район с волновыми облаками представляет опасность для легкой авиации. В главе 8 мы подробнее рассмотрим волны и покажем, чем опасен ротор.
УСЛОВИЯ И ЦИКЛЫ ТУРБУЛЕНТНОСТИ
Понятно, что жаркие, сухие условия идеальны для возникновения сильной термической турбулентности. В дополнение, большой градиент давления, местные прогревы или крупномасштабная циркуляция вызывают сильный ветер, что может привести еще и к мощной механической турбулентности.
Изменения стабильности атмосферы тесно связано с типом турбулентности. Стабильный воздух не способствует термической активности или другим видам вертикального движения потоков. Механическая турбулентность, как и термическая, довольно неожиданна в стабильных условиях, и умирает быстрее. С другой стороны взаимодействие стабильного воздуха с другими слоями зачастую приводит к турбулентности среза.
Из вышесказанного мы можем сделать вывод, что каждый тип турбулентности наиболее вероятен при определенных условиях в различное время. На смену утренним стабильным приходят послеобеденный нестабильные условия, затем вечерняя и ночная стабильность. В более крупных временных масштабах зимние стабильные условия меняются весенними, нестабильными, затем смесь летом (стабильные и нестабильные во влажных районах, нестабильные в сухих районах), затем, в основном, нестабильные осенью, когда холодный фронт движется к югу. В таблице приведены различные типы турбулентности и их наличие от времени и атмосферных условий.
Конечно, возможны различные исключения из таблицы. Например, термичные дни бывают зимой после прохода холодного фронта или в пустыне в солнечный день. Турбулентность среза может быть в любое время года или в середине дня, когда рядом фронты или барические системы. В зимнем, холодном и плотном воздухе термическая турбулентность слаба, не сильно распространяется и механическая, но любое движение или вращение воздуха более энергонасыщенно, так как воздух более плотный.
Механическая турбулентность встречается только в ветреные дни.
ПРИЗЕМНЫЕ УСЛОВИЯ
Исходя из того, что спортивная авиация, в основном, летает в эшелоне до нескольких сотен метров, хотелось бы обратить внимание на приземное пространство. Как мы знаем нижний слой воздуха называют пограничным из-за процессов, связанных с трением его о поверхность, а это значит, что при ветре будет механическая турбулентность.