Выбрать главу

Рис. 142. Изменение скорости восходящего потока от направления ветра и крутизны склона

Из всего выше сказанного следует, что надо держаться у склонов, которые расположены более круто к ветру. На рисунке 143 изображен приближающийся к реальному горный ландшафт и указаны зоны хороших динамических потоков, а также нисходящих и турбулентности. Этот рисунок приблизительно отражает место полетов в Mont Revard во французских Альпах.

Рис. 143. Локализация восходящего потока ветрам

КАНЬОНЫ И ПРОЛОМЫ

Ранее мы разобрались с моделью восходящих и нисходящих потоков, возникающих в каньонах (глава 6). Здесь мы просто отметим, что в них возникают хорошие динамические потоки у вершины, если ветер прямо внутрь и на наветренном склоне, если ветер пересекает каньон. Остерегайтесь подветренных склонов из-за турбулентности.

Отметим, что нисходящие массы воздуха могут поджидать вас высоко над подветренным склоном. В случае, когда горный хребет разрезан, то в проломе при прямом ветре создается ситуация, показанная на рисунке 144.

Рис. 144. Потоки вблизи ущелья

Здесь мы видим изменение потока возле пролома, сжатие его и ускорение. Турбулентность на подветренной стороне такая, как показано на рисунке 111. Полет возле пролома может быть небезопасен именно по причине ускорения потока. Не рискуйте летать в таких местах в сильный ветер. Проломы, которые не разрезают хребет насквозь и если они не очень глубокие, могут работать, как чаши с хорошими динамическими потоками. Более глубокие проломы создают восходящие потоки далеко позади и могут быть вне досягаемости легкими летательными аппаратами.

При обоих типах проломов следует избегать подветренной стороны и стремиться на наветренной стороне к наибольшей высоте, как показано на рисунке. Основное правило при пересечении проломов — это чем ниже, тем дальше впереди надо лететь, чтобы избежать затягивания потоком в пролом. Пересечение с небольшой попутной составляющей ветра облегчает, а с составляющей навстречу затрудняет задачу.

ПРОБЛЕМЫ ПАРЕНИЯ У ГРЕБНЯ

Одна из реальностей парения у гребня есть тот факт, что у поверхности присутствует турбулентность, вызванная трением потока о склон. Поэтому приходится выдерживать большую скорость (планеры, дельтапланы), что соответственно приводит к увеличению и вертикальной составляющей, а это затрудняет парение. Следует особо отметить различия в турбулизации потока над склонами, поросшими травой и деревьями. Турбулентность минимальна над ровным грунтовым склоном.

На рисунке 145 показан градиент скорости потока, движущегося вверх по склону. Это может привести к увеличению подъема на консоли, дальней от склона, к крену и развороту аппарата на склон. Вы должны противодействовать этой тенденции, а для этого тоже нужен некоторый запас скорости.

Рис. 145. Градиент ветра на наветренном склоне

Над вершиной хребта может быть зона, где скорость потока больше, чем ветер, ее называют зоной Вентури (Venturi). Процесс этот аналогичен тому, что происходит в карбюраторе вашего автомобиля: сжатие потока приводит к его ускорению (такое же явление наблюдается в сужающихся долинах, ущельях, проломах и т. д.). Как видно из рисунка 146, более скоростной поток ограничивается высотой меньшей, чем высота горы. Эту зону легко обойти, но многие, если не все пилоты, убедились в ее наличии на собственном опыте. Обычно для возникновения над гребнем зоны Вентури требуется ветер по меньшей мере 20 км/час, причем этот эффект не наблюдается на изолированных холмах или горах.

Рис. 146. Зона риска над гребнем

ИЗМЕНЧИВОСТЬ ВОСХОДЯЩИХ ПОТОКОВ

Динамический поток на гребне существует так долго, пока дует ветер. В некоторые дни это

действительно так, но в другое время при определенных скоростях и направлениях ветра восходящие потоки слабы или отсутствуют совсем. Это состояние дел может быть очень огорчительным.