Выбрать главу

Но суть даже не в этих внешних признаках могущества жизни, а в том, что развивавшаяся после Вернадского наука, идя самостоятельным путем, пришла в ту же точку, в которой он уже побывал. Естественные науки, по сути дела, переоткрыли биосферу заново. Та жизнь, которую “проходят” в учебниках биологии, все ее богатство оказалось ничтожным по сравнению с бактериальной жизнью и по времени существования, и по результатам жизнедеятельности, и по разнообразию экологического контроля ЖВ над неживой частью биосферы. Фундаментальная биосфера – хемолитотрофная биосфера – обладает изумительной, в сущности, даже абсолютной гибкостью взаимодействий, поскольку все возможные логически пространства могут быть задействованы. Эта скорость управления веществом есть лишь отражение скорости размножения – бега биологического времени-пространства.

Фундаментальная роль бактериальной биосферы доказывается и длением ее. Только 0,7 миллиарда лет оказалось отпущено на ту биологическую эволюцию, которая совсем еще недавно считалась основным содержанием геологической истории. Но это время – чуть больше фанерозоя, как выяснилось, – занимает только небольшую, даже по явным следам жизни 1/7 часть, длительности выясненного на сегодня существования биосферы на Земле. Но развивавшиеся около 600 миллионов лет высшие биологические виды – не следствие и не порождение микроскопической жизни. У них только общее минеральное тело. Между этими двумя мирами пока не обнаружено признанных переходов или мостиков, по которым одно могло бы перейти к другому. Одноклеточные бесконечно и с огромной скоростью делящиеся хемотрофы с разнообразным минеральным питанием не являются поэтому родителями многоклеточных организмов, приобретшими такое качество как смерть, то есть не могли потерять свое главное и единственное свойство – деление клеток.

Морфологически хемотрофные организмы представляют собой клетки без оформленного ядра – прокариоты, тогда как у многоклеточных есть ядро, они называются по этому признаку эукариотами или эвкариотами. Пока не найдено пути от первых ко вторым, да и сами эти поиски ведутся по привычной эволюционной модели “происхождизма”.

Микроскопическая жизнь и не исчезла с развитием на ее экологической, но не морфологической основе многоклеточной жизни. Она по-прежнему составляет фундамент биосферы, ничего не “зная” о живущей над ней в первом этаже многоклеточной, “многорганной” биосфере. Везде, где возможно, она по-прежнему согласно постулату Бейеринка разрабатывает свои экологические ниши. Известно, как трудно избавиться от мощного давления микробов на наших полях, в городах, в животноводстве, повсюду цивилизации приходится ставить против нее химические барьеры. Известно также, как легко и мгновенно возвращается микроскопическая жизнь туда, где ткань животной или растительной биосферы была нарушена по причине геологических или антропогенных катастроф и образовались возможные экологические ниши. В этом месте сразу возникает сообщество микроскопических автотрофов, затягивающих ткань нарушенной биосферы. Хемотрофы первыми возникают в вулканических извержениях, образуя сопряженные системы “вулканы - бактерии”, где нет по сути дела “первичной” минеральной действительности и “вторичной” биолого-экологической, а есть единая система экологического круговорота вещества с участием микробных сообществ. (Вулканы..., 1991). Вулканы могли бы быть лучшим учебным полигоном для изучения первичной, фундаментальной биосферы, потому что нигде не осуществляется настолько прямо и непосредственно метаболизм хемолитотрофов в их питательном минеральном субстрате, пока еще не “замазанном” многоклеточным “органическим” ЖВ.

Точно также и кажущаяся совсем уж далекой от биологии тектоника, то есть учение о движении больших масс, континентальных плит теперь связывают с захоронением продуктов жизнедеятельности. Подсчет, проведенный недавно географом Н.Ф. Глазовским, показывает, что внесенная массой захороненного биогенного вещества энергия вполне достаточна для объяснения внутренней активности Земли и явлений субдукции. (Глазовский, 1997)

Однако эти факты и гипотезы выходят за рамки данного исследования. Они просто вытекают из основных тезисов Вернадского о всюдности жизни и всегдашности биосферы, которые пока еще вызывают непонимание. Мы поражаемся тому, что для бактерий нет препятствий и запретных мест для жизнедеятельности, и со времен Вернадского примеры находок живых организмов в самых гиблых местах множатся, их находят в ядерных реакторах, на обшивках космических аппаратов, в грязевых вулканах глубоко на дне океана. Споры бактерий могут сохраняться в космосе неопределенно долго, никто не знает сколько. Нет таких химических соединений, включая смертельно ядовитые с нашей точки зрения, которые не могло бы стать питательным для них субстратом, потому что они все изготавливаются биотой.

Теперь-то только и становится понятным введенный Вернадским термин (не получивший гражданства в науке) “монолит жизни”: единая, длящаяся во времени и неразделимая в пространстве глобальная экосистема живого вещества, для которой планета во всем ее минеральном богатстве является “минеральным телом”, неразрывно связанным со своей микроскопической могущественной живой контролирующей частью. И если он по причине малочисленности фактов не мог доказать, что жизнь абсолютно всюдна, ныне ее не надо доказывать, она стала общепринятой. Теперь прослеживается другая, непривычная перспектива в этом тезисе: жизнь возникает не просто там, где есть условия для нее, она сама создает условия для своего существования, и создает их на любом экологическом уровне, в том числе и на уровне микробных сообществ. Обилие и полнота экологического пищевого поведения хемотрофов показывает не случайное “приспособление” живых организмов к окружающей среде, но н нечто другое: единство экосистемы, где организмы являются необходимым логическим и геохимическим звеном, повышающим ее энергоемкость.

И теперь, после того, как после Вернадского переоткрыта биосфера и ее размеры, состав и могущество стали выясняться быстрыми темпами, необходимо сопоставить представление о фундаментальной биосфере с принципом Гюйгенса-Вернадского, с идеей космического значения жизни. В ее свете выглядит уже анахронизмом представление о приспособлении жизни к неким условиям, что приводит к мысли о случайности жизни. Случайностью может быть только разнообразная конкретная экологическая обстановка жизни, но контроль ею этой обстановки является закономерностью. Могущество и геохимическое разнообразие ЖВ, позволяющее вовлекать в жизненный круговорот все без исключения химические соединения и преобразовывать их, повышать их химический потенциал, энергетическую мощность соединений свидетельствует о космическом значении жизни, а не о цеплянии ее за случайные пристанища.

Мы стоим только на первых ступенях начинающегося познания жизни в космосе. И если Вернадский высказывал только предположения о жизни на Марсе, Венере, планетах земной группы, то есть твердых, где может существовать жизнь, то теперь у нас имеются уже первые, пока еще косвенные, но очень красноречивые факты существования организмов за пределами Земли. Сейчас обращается пристальное внимание на отыскание жизни на Марсе, на спутниках Юпитера Европе, где почти доказано присутствие жидкой воды под ледяной поверхностью и на Ио, покрытой действующими серными вулканами.

О том же свидетельствует новая только что созданная недавно наука космическая петрография. Она исследует с единых позиций минеральное единство космических тел и обнаруживает сходную эволюцию всех планет солнечной системы. (Маракушев, 1999).

Но есть еще более красноречивые и прямые факты. Недавно и русские, и американские ученые обнаружили в метеоритах явные следы бактериальной деятельности. (Жмур и др., 1997). И это позволяет пока еще неуверенно говорить о создании еще одной новой науки – экзопалеонтологии – о жизни за пределами нашей планеты. Следовательно, на наших глазах создается и экзобиосферика.

И совершенно естественно, что существование прокариотной фундаментальной биосферы ставит по-новому, углубляет и обогащает то представление о биологическом пространстве-времени, которое выработано Вернадским. Новые открытия, с одной стороны, доказывают правомерность его эмпирических обобщений, а с другой – вносят в них новые чрезвычайно яркие черты пространства-времени, которые только могли быть едва намечены в атмосфере науки тридцатых-сороковых годов двадцатого века.