9.2. Точка пересечения прямых На местности колышками обозначены две точки одной прямой и две точки другой прямой. Как найти точку пересечения этих прямых?
9.3. Симметрия относительно точки На местности обозначены точки A и В. Найдите точку С, симметричную точке A относительно точки В.
9.4. Параллельная прямая На местности обозначены три данные точки A, В и С, не лежащие на одной прямой. Через точку A проложите прямую, параллельную прямой ВС.
9.5. Середина отрезка Найдите середину отрезка AВ, заданного на местности двумя точками A и В.
9.6. В данном отношении Отрезок, заданный на местности двумя точками A и В, требуется разделить в отношении, в котором находятся длины двух отрезков KL и MN, заданных на местности точками К, L и М, N. Как это сделать?
9.7. Биссектриса угла На местности обозначены три точки A, М и N, не лежащие на одной прямой. Проложите биссектрису угла MAN.
9.8. Перпендикуляр к прямой Проложите на местности какую-нибудь прямую, перпендикулярную прямой, проходящей через заданные точки A и В. Как проложить перпендикуляр к прямой АВ, проходящий через данную точку Я?
9.9. Под заданным углом На местности обозначены точки A и В. Найдите точки С, D и В, для которых выполнены равенства ∠ ВAС = 45°, ∠ BAD = 60° ∠ ВAE = 30°.
Решения
9.1. Пользуясь зрительным эффектом состоящим в загораживании двух колышков третьим, стоящим на общей с ними прямой, нетрудно установить еще один колышек в некоторой точке С на продолжении отрезка с концами в двух данных точках A и В. После этого точки отрезка АВ можно построить с помощью того же эффекта, поскольку они будут лежать на продолжении либо отрезка АС, либо ВС (в зависимости от того, какая из точек - А или В - находится ближе к точке С). Вообще, любая точка прямой АВ будет лежать на продолжении хотя бы одного из отрезков АВ, АС или ВС.
9.2. Пользуясь зрительным эффектом, указанным в решении задачи 9.1, легко найти точку пересечения прямых в том случае, если сразу ясно, что она лежит на продолжениях своих отрезков с концами в данных точках. В противном случае достаточно сначала проложить одну или обе прямые так, чтобы на каждой из них с одной стороны от предполагаемой точки пересечения были отмечены по две точки.
9.3. Продолжим прямую АВ за точку В и отложим на ней точку С на расстоянии АВ от точки В. Для этого понадобится измерить в подходящих единицах длины расстояние между точками А и В.
9.4. Продолжим прямую АВ за точку В и отложим на ней точку D на расстоянии АВ от точки В (рис. 8). Продолжим прямую CD за точку С и отложим на ней точку Е на расстоянии CD от точки С. Тогда отрезок АЕ будет параллелен отрезку ВС, являющемуся средней линией треугольника ADE. Заметим, что предложенный способ выгодно отличается от множества других способов, опирающихся на измерение углов или на деление отрезка пополам.
Рис. 8
9.5. Возьмем какую-либо точку С, не лежащую на прямой АВ. Продолжим прямую ВС за точку С и отложим на ней точку D на расстоянии 2ВС от точки С (рис. 9). Продолжим прямую AD за точку А и отложим на ней точку Е на расстоянии AD от точки А. Искомая середина F отрезка АВ лежит на его пересечении с прямой ЕС. Действительно, отрезок СЕ параллелен отрезку AG - средней линии треугольника CDE (здесь G - середина отрезка CD). Так как, кроме того, BC = CG, то CF - средняя линия треугольника ABG, откуда AF = FB.
Рис. 9
Быть может, приведенный способ нахождения середины отрезка покажется вам не самым простым. Однако его преимущества хорошо проявляются в следующей задаче, решив которую вы сможете делить отрезок не только на две, но и на любое число равных частей.
9.6. Построение точки F, делящей отрезок А В в отношении AF:BF = KL:MN, произведем аналогично построению середины отрезка АВ, описанному в решении задачи 9.5. Отличие будет состоять только в том, что точку С выберем на расстоянии KL от точки В, а точку D - на расстоянии 2MN от точки С (рис. 9). В этом случае прямая ЕС по-прежнему будет параллельна отрезку AG, а значит, разделит отрезок АВ в том же отношении, в котором она делит отрезок BG.
9.7. Выберем на одной стороне данного угла (рис. 10) точки В и С, а на другой - точки D и Е так, чтобы выполнялись равенства
AB = BC = AD = DE.
Рис. 10
Найдем точку О пересечения прямых BE и CD. Тогда прямая АО будет искомой биссектрисой, поскольку в равнобедренном треугольнике АСЕ биссектриса AF является одновременно и медианой, а значит, проходит через точку О пересечения медиан ЕВ и CD.