и, отразив точку С симметрично относительно точки F, получаем из неравенства треугольника OBG
Рис. 38
Положим для определенности, что a>b>c, тогда
Любой замкнутый маршрут, проходящий через точки О, A, В и С, можно считать составленным из прямых участков, которые соединяют эти точки в некоторой последовательности, начинающейся и кончающейся, скажем, точкой О. Тогда возможны только следующие три принципиально различных маршрута:
OCBAO, OBACO, OACBO,
а все остальные маршруты получаются из перечисленных заменой направления движения на противоположное. Длины этих маршрутов равны соответственно
x + c + a + z = l - (b + y),
y + a + b + x = l - (c + a),
z + b + c + y = l - (a + x),
где принято обозначение l = a + b + c + x + y + z. Поэтому наименьшую длину будет иметь последний из перечисленных маршрутов, т. е. маршрут, не проходящий по наибольшей стороне треугольника ABC.
12.15. Заметим прежде всего, что все прямые дороги, соединяющие две данные магистрали, можно разбить на группы дорог, образующих замкнутые маршруты одинаковой длины. Такими группами будут являться группы дорог, касающихся какой-то общей окружности, вписанной в угол между магистралями (дороги должны касаться той части окружности, которая обращена к точке D пересечения магистралей; рис. 39). Действительно, любая дорога АВ, касающаяся данной окружности в токе С, будет образовывать маршрут, длина которого не зависит от точки С, так как равна сумме длин касательных DE и DF к окружности, проведенных из точки L:
Рис. 39
Последняя сумма будет тем меньше, чем ближе центр окружности расположен к точке D.
Таким образом, для проведения искомой дороги достаточно выбрать ближайшую к точке D вписанную в данный угол окружность, которая еще допускает проведение к ней касательной из данной точки С. Такая окружность просто проходит через точку С, а строится она способом, примененным нами ранее при решении задачи 11.8 (проведем какую-нибудь вписанную окружность и найдем соответствующую точку С' ее пересечения с прямой DC, тогда в силу подобия искомый отрезок АВ будет параллелен касательной, проведенной к проведенной окружности в точке С).
12.16. Пусть магистрали образуют остроугольный треугольник ABC, а на сторонах АВ, АС и ВС автобус имеет выезды в точках D, Е и F (рис. 40). Построим точки G и Н, симметричные точке D относительно сторон АС и ВС соответственно. Тогда длина ломаной DFED равна длине прямой GEFH и является наименьшей (при фиксированной точке D, а с ней и фиксированных точках G и Н), если точки Е и F лежат на прямой GH. Наконец, для нахождения точки D, при которой отрезок GH имеет наименьшую длину, заметим, что угол GCH вдвое больше фиксированного угла АСВ, так как
Рис. 40
Поэтому основание GH равнобедренного (GC = HC) треугольника GCH имеет наименьшую длину, когда его боковая сторона GC минимальна. А эта ситуация в свою очередь реализуется, когда точка G, лежащая на отрезке, симметричном отрезку А В относительно прямой АС, является основанием перпендикуляра CG к этому отрезку, т. е. когда CD - тоже перпендикуляр к стороне АВ. Итак, доказано, что точка D выезда автобуса к магистрали АВ должна быть основанием высоты треугольника ABC. Аналогично доказывается, что и другие точки Е и F также должны быть основаниями высот этого треугольника.
12.17. Пусть населенные пункты обозначены через А, В, С, а искомая точка расположения завода - через D. Повернем треугольник ACD на угол 60° вокруг точки А в направлении полуплоскости, не содержащей точку В (рис.41). Получим треугольник AEF, удовлетворяющий равенствам
EF = CD, FD = AD,
так как треугольники ACD и AEF равны, а треугольник FD является равносторонним (AF = AD и ∠DAF = 60°).
Рис. 41
Сумма расстояний от точки D до точек A, В и С равна длине ломаной BDFE и, следовательно, не может оказаться меньше отрезка BE. Поэтому наименьшее значение указанной суммы будет равно длине отрезка BE, но при условии, что точку D можно подобрать так, чтобы и сама эта точка, и точка F, полученная в результате поворота, оказались лежащими на отрезке BE. Для построения такой точки достаточно провести перпендикуляр АН к отрезку BE и отложить от него угол HAD величиной 30° в направлении точки В (рис. 42). Докажите самостоятельно, что каждый из углов ADB, BDC и ADC, под которыми видны стороны треугольника ABC из искомой точки D, равен 120°.