Интерпретатор также формирует канал, соединяющий стандартный выходной поток подпроцесса ls со стандартным входным потоком подпроцесса less. Таким образом, имена файлов, перечисляемые программой ls, посылаются программе постраничной разбивки less в том порядке, в котором они отображались бы нетерминале.
Информационная емкость канала ограничена. Если пишущий процесс помещает данные в канал быстрее, чем читающий процесс их извлекает, и буфер канала переполняется, то пишущий процесс блокируется до тех пор, пока буфер не освободится. И наоборот: если читающий процесс обращается к каналу, в который еще не успели поступить данные, он блокируется в ожидании данных. Таким образом, канал автоматически синхронизирует оба процесса.
5.4.1. Создание каналов
Канал создается с помощью функции pipe(). Ей необходимо передать массив из двух целых чисел. В элементе с индексом 0 функция сохраняет дескриптор файла, соответствующего выходному концу канала, а в элементе с индексом 1 сохраняется дескриптор файла, соответствующего входному концу канала. Рассмотрим следующий фрагмент программы
int pipe_fds[2];
int read_fd;
int write_fd;
pipe(pipe_fds);
read_fd = pipe_fds[0];
write_fd = pipe_fds[1];
Данные, записываемые в файл write_fd, могут быть прочитаны из файла read_fd.
5.4.2. Взаимодействие родительского и дочернего процессов
Функция pipe() создает два файловых дескриптора, которые действительны только в текущем процессе и его потомках. Эти дескрипторы нельзя передать постороннему процессу. Дочерний процесс получает копии дескрипторов после завершения функции fork().
В программе, показанной в листинге 5.7. родительский процесс записывает в канал строку, а дочерний процесс читает ее. С помощью функции fdopen() файловые дескрипторы приводятся к типу FILE*. Благодаря этому появляется возможность использовать высокоуровневые функции ввода-вывода, такие как printf() и fgets().
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
/* Запись указанного числа копий (COUNT) сообщения (MESSAGE)
в поток (STREAM) с паузой между каждой операцией. */
void writer(const char* message, int count, FILE* stream) {
for (; count > 0; --count) {
/* Запись сообщения в поток с немедленным "выталкиванием"
из буфера. */
fprintf(stream, "%s\n", message);
fflush(stream);
/* Небольшая пауза. */
sleep(1);
}
/* Чтение строк из потока, пока он не опустеет. */
void reader(FILE* stream) {
char buffer[1024];
/* Чтение данных, пока не будет обнаружен конец потока.
Функция fgets() завершается, когда встречает символ
новой строки или признак конца файла. */
while (!feof(stream)
&& !ferror(stream)
&& fgets(buffer, sizeof (buffer), stream) != NULL)
fputs(buffer, stdout);
}
int main() {
int fds[2];
pid_t pid;
/* Создание канала. Дескрипторы обоих концов канала
помещаются в массив FDS. */
pipe(fds);
/* порождение дочернего процесса. */
pid = fork();
if (pid == (pid_t)0) {
FILE* stream;
/* Это дочерний процесс. Закрываем копию входного конца
канала. */
close(fds[1]);
/* Приводим дескриптор выходного конца канала к типу FILE*
и читаем данные из канала. */
stream = fdopen(fds[0], "r");
reader(stream);
close(fds[0]);
} else {
/* Это родительский процесс. */
FILE* stream;
/* Закрываем копию выходного конца канала. */
close(fds[0]);
/* Приводим дескриптор входного конца канала к типу FILE*
и записываем данные в канал. */
stream = fdopen(fds[1], "w");
writer("Hello, world.", 5, stream);
close(fds[1]);
}
return 0;
}
Сначала в программе объявляется массив fds, состоящий из двух целых чисел. Функция pipe() создает канал и помещает в массив дескрипторы входного и выходного концов канала. Затем функция fork() порождает дочерний процесс. После закрытия выходного конца канала родительский процесс начинает записывать строки в канал. Дочерний процесс читает строки из канала, предварительно закрыв его входной конец.