% od -t x1 /dev/random
0000000 2с 9с 7а db 2е 79 3d 65 36 c2 e3 1b 52 75 1е 1а
0000020 d3 6d 1e a7 91 05 2d 4d c3 a6 de 54 29 f4 46 04
0000040 b3 b0 8d 94 21 57 f3 90 61 dd 26 ac 94 c3 b9 3a
0000060 05 a3 02 cb 22 0a be c9 45 dd a6 59 40 22 53 d4
Число строк в выводе команды будет разным (их может оказаться очень мало). Главное то, что, в конце концов, вывод прекратится, поскольку операционная систем исчерпает запас случайных чисел. Попробуйте теперь переместить мышь или нажать что-нибудь на клавиатуре, и вы увидите, что появляются новые случайные числа.
В противоположность этому операция чтения из устройства /dev/urandom никогда не блокируется. Если в системе кончаются случайные числа, Linux использует криптографический алгоритм, чтобы сгенерировать псевдослучайные числа из последней цепочки случайных байтов.
Следующая команда будет выполняться до тех пор. пока пользователь не нажмет <Ctrl+C>:
% od -t x1 /dev/urandom
0000000 62 71 d6 3e af dd de 62 c0 42 78 bd 29 9c 69 49
0000020 26 3b 95 be b9 6c 15 16 38 fd 7e 34 f0 ba ее c3
0000040 95 31 e5 2c 8d 8a dd f4 c4 3b 9b 44 2f 20 d1 54
...
Поучить доступ в программе к генератору случайных чисел несложно. В листинге 6.1 показана функция, которая генерирует случайное число, читая байты из файла /dev/random. Помните, что операция чтения из этого файла окажется заблокированной в случае нехватки случайных чисел. Если важна скорость работы функции и можно смириться с тем, что некоторые числа окажутся псевдослучайными, воспользуйтесь файлом /dev/urandom.
/dev/random#include <assert.h>
#include <sys/stat.h>
#include <sys/types.h
#include <fcntl.h>
#include <unistd.h>
/* Функция возвращает случайное число в диапазоне от MIN до МАХ
включительно. Случайная последовательность байтов читается из
файла /dev/random. */
int random_number(int min, int max) {
/* Дескриптор файла /dev/random сохраняется в статической
переменной, чтобы не приходилось повторно открывать файл
при каждом следующем вызове функции. */
static int dev_random_fd = -1;
char* next_random_byte;
int bytes_to_read;
unsigned random_value;
/* Убеждаемся, что аргумент MAX больше, чем MIN. */
assert(max > min);
/* Если функция вызывается впервые, открываем файл /dev/random
и сохраняем его дескриптор. */
if (dev_random_fd == -1) {
dev_random_fd = open("/dev/random", O_RDONLY);
assert(dev_random_fd != -1);
}
/* Читаем столько байтов, сколько необходимо для заполнения
целочисленной переменной. */
next_random_byte = (char*)&random_value;
bytes_to_read = sizeof(random_value);
/* Цикл выполняется до тех пор, пока не будет прочитано
требуемое количество байтов. Поскольку файл /dev/random
заполняется в результате пользовательских действий,
при длительном отсутствии активности операция чтения
может быть заблокирована или возвращать
лишь один байт за раз. */
do {
int bytes_read;
bytes_read =
read(dev_random_fd, next_random_byte, bytes_to_read);
bytes_to_read -= bytes_read;
next_random_byte += bytes_read;
} while (bytes_to_read > 0);
/* Вычисляем случайное число в правильном диапазоне. */
return min + (random_value % (max - min + 1));
}
6.5.5. Устройства обратной связи
Устройство обратной связи позволяет сымитировать блочное устройство с помощью обычного дискового файла. Представьте жесткий диск, в котором данные находятся не в дорожках и секторах, а в файле с именем disk-image (естественно, сам этот файл должен размещаться на реальном диске, размер которого больше имитируемого).
Устройства обратной связи называются /dev/loop0, /dev/loop1 и т.д. Каждому из них соответствует одно виртуальное блочное устройство. Создавать такие устройства может только суперпользователь.
Устройство обратной связи используется так же, как и любое другое блочное устройство. В частности, на нем можно создать файловую систему и смонтировать ее подобно файловой системе обычного диска или раздела. Такая файловая система, целиком размещаемая в дисковом файле, называется виртуальной файловой системой (ВФС).