Выбрать главу

Иногда одна или две ассемблерные команды способны заменить целую группу высокоуровневых инструкций. Например, чтобы определить позицию самого старшего значащего бита целого числа в языке С, требуется написать цикл, тогда как во многих ассемблерных языках для этой цели существует операция bsrl. Ее использование будет продемонстрировано в разделе 9.4, "Пример".

9.2. Простая ассемблерная вставка

Вот как с помощью функции asm() осуществляется сдвиг числа на 8 битов вправо:

asm("shrl $8, %0" : "=r" (answer) : "r" (operand) : "cc");

Выражение в скобках состоит из секций, разделенных двоеточиями. В первой секции указана ассемблерная инструкция и ее операнды. Команда shrl осуществляет сдвиг первого операнда на указанное число битов вправо. Первый операнд представлен выражением %0. Второй операнд — это константа $8.

Во второй секции задаются выходные операнды. Единственный такой операнд будет помещен в C-переменную answer, которая должна быть адресуемым (левосторонним) значением. В выражении "=r" знак равенства обозначает выходной операнд, а буква r указывает на то, что значение переменной answer заносится в регистр.

В третьей секции перечислены входные операнды. Переменная operand содержит значение, подвергаемое битовому сдвигу. Выражение "r" означает, что значение переменной записывается в регистр.

Выражение "cc" в четвертой секции говорит о том. что инструкция меняет значение регистра cc (содержит код завершения).

9.2.1. Преобразование функции asm() в ассемблерные инструкции

Компилятор gcc интерпретирует функцию asm() очень просто: он генерирует ассемблерные инструкции, обрабатывающие указанные входные и выходные операнды, после чего заменяет вызов функции заданной инструкцией. Никакой дополнительный анализ не выполняется.

Например, следующий фрагмент программы:

double foo, bar;

asm("mycool_asm %1, %0" : "=r" (bar) : "r" (foo));

будет преобразован в такую последовательность команд x86:

 movl -8(%ebp),%edx

 movl -4(%ebp),%ecx

#APP

 mycool_asm %edx, %edx

#NO_APP

 movl %edx,-16(%ebp)

 movl %ecx,-12(%ebp)

Переменные foo и bar занимают по два слова в стеке в 32-разрядной архитектуре x86. Регистр ebp ссылается на данные, находящиеся в стеке.

Первые две команды копируют переменную foo в регистры edx и ecx, с которыми работает инструкция mycool_asm. Компилятор решил поместить результат в те же самые регистры. Последние две команды копируют результат в переменную bar. Выбор нужных регистров и копирование операндов осуществляются автоматически.

9.3. Расширенный синтаксис ассемблерных вставок

В следующих подразделах будет описан синтаксис правил, по которым строятся выражения в функции asm(). Секции выражения отделяются друг от друга двоеточиями. Мы будем ссылаться на следующую инструкцию, которая вычисляет результат булевого выражения x > y:

asm("fucomip %%st(1), %%st; seta %%al" :

 "=a" (result) : "u" (y), "t" (x) : "cc", "st");

Сначала инструкция fucomip сравнивает два операнда, x и y, и помещает значение, обозначающее результат, в регистр cc, после чего инструкция seta преобразует это значение в 0 или 1.

9.3.1. Ассемблерные инструкции

Первая секция содержит ассемблерные инструкции, заключенные в кавычки. В рассматриваемом примере таких инструкций две: fucomip и seta. Они разделены точкой с запятой. Если текущий вариант языка ассемблера не допускает такого способа разделения инструкций, воспользуйтесь символом новой строки (\n).

Компилятор игнорирует содержимое первого раздела, разве что один уровень символов процента удаляется, т.е. вместо %% будет %. Смысл выражения %%st(1) и ему подобных зависит от архитектуры компьютера.

Если при компиляции программы, содержащей функцию asm(), указать опцию -traditional или -ansi, компилятор gcc выдаст предупреждение. Чтобы этого избежать, используйте альтернативное имя __asm__.