Выбрать главу

Астрономы заранее подсчитали, какие результаты будут в случае, если прав Эйнштейн, и в том случае, если он ошибается.

Экспедиция была дальней. О ней много говорили, к ней долго готовились. Возглавлял её один из восторженных почитателей Эйнштейна — Эддингтон. Он так волновался, что его коллеги сочинили анекдот. Один участник экспедиции якобы спрашивает другого:

«А что, если мы получим отклонение лучей света звёзд другое, чем предсказывает Эйнштейн?»

«Не дай бог, — отвечает тот, — Эддингтон сойдёт с ума!»

Маленькому Лайошу Яноши, сыну венгерского астронома, было семь лет, когда происходили эти удивительные события. Его воображение было взбудоражено. Его нельзя было уложить в постель, когда отец и его гости говорили о том, что было романтичнее и увлекательнее, чем любые приключения в самой волшебной сказке.

Это один из примеров влияния на творческую жизнь человека впечатлений детства. Бывает, что толчком, дающим ход воображению, мысли, вовсе не обязательно являются столь оглушительные события. Иначе как объяснить, что другой мальчик, родившийся на столетие раньше (мальчик, ставший писателем), Эдгар По, тоже «болел» космосом? Болел без видимых оснований (тогда не было никакой острой «космической инфекции») и даже создал впоследствии теорию осциллирующей Вселенной, правда сбивчивую, но страстно изложенную в странной космологической работе под названием «Эврика».

Судьбу Эйнштейна, по его собственным словам, тоже определили два «чуда» детства: компас и евклидова геометрия, которую он прочитал в двенадцать лет…

— И мой путь был определён в детстве, — рассказывал мне академик Яноши при знакомстве. — Тогда в науку шли только по призванию. Профессия физика была тяжёлой. Правительства не очень жаловали науку. Но я рос в атмосфере постоянных размышлений о сути природы, о смысле жизни, о роли человека и учёного в обществе. И другого пути, чем в науку, выбрать не мог.

Теория относительности была первой путеводной звездой, которая повела маленького Лайоша по жизни. Можно сказать, что он воспринял новый взгляд на мир на пороге детской. Это было важное преимущество, доставшееся ему само собой, преимущество перед предшествующим поколением физиков, которым приходилось с большим трудом преодолевать традиционный подход к явлениям природы, воспитанный в них доэйнштейновской школой. И если вспомнить, что даже в 1935 году профессор Чикагского университета, известный физик Макмиллан, говорил на лекциях своим студентам, что теория относительности — печальное недоразумение, то уже без удивления воспринимаешь тот факт, что один из современников Эйнштейна насчитал лишь двенадцать человек, по-настоящему понимавших его теорию.

В 1965 году, когда Яноши уже опубликовал свой вариант теории относительности, физик Гарднер писал об эйнштейновской: «Его теория так революционна, так противоречит «здравому смыслу», что даже сегодня имеются тысячи учёных, в том числе и физиков, для которых понимание её основных положений сопряжено с такими же трудностями, с какими сталкивается ребёнок, пытаясь понять, почему люди в Южном полушарии не падают с Земли».

Разобраться в теории относительности, развить её, преодолеть трудности, с которыми последние тридцать лет жизни сражался сам Эйнштейн, пытаясь разрешить главные противоречия в проблемах мироздания, могло лишь молодое поколение физиков. Поколение, к которому и принадлежал Яноши.

Когда он впервые столкнулся с новыми веяниями в физике, с новыми взглядами на окружающий мир, ему не нужно было вытеснять ими какие-то другие, уже ставшие для него органичными представления. Он не должен был переучиваться, насиловать себя, настраиваться на чуждые ему идеи. Свежие взгляды на мир Яноши принял как естественное положение вещей. Ему ничто не мешало почувствовать себя дома в мире относительности — странном для поколения его отца.

Но для того чтобы Яноши мог представить на суд своих современников труд под многозначительным названием «Теория относительности, основанная на физической реальности», должно было пройти немало лет. Прежде чем стать одним из самых авторитетных учёных наших дней, ему предстояло учиться — и он отправился в Германию, где Гитлер ещё не произвёл трагическую ревизию немецкой науки и в немецких университетах можно было слушать лекции таких замечательных учёных, как Шрёдингер, Блеккет, Кольхерстер; Яноши предстояло стать начинающим физиком — и он стал ассистентом Кольхерстера.

И тут для него взошла вторая путеводная звезда.

Родилась физика космических лучей. Она увлекла многих учёных — не только тем, что могла помочь изучить космос, макромир. Главное, она открывала дорогу в микрокосмос, в царство атома, населённое ещё не ведомыми людям планетами — элементарными частицами. Как мы знаем, огромный вклад в эту область физики внёс русский физик, молодой тогда Дмитрий Скобельцын, основоположник советской школы космиков. Он проводил виртуозные эксперименты в камере Вильсона, он первым наблюдал пролёт через камеру космической частицы, он предложил и методику наблюдений. Повторяя его эксперимент, учёные всего мира учились работать с космическими частицами.

Космическая частица раскалывала атом, как щипцы орех; оставалось посмотреть, из чего состоит этот орешек. Никаким другим способом в те времена расколоть ядро атома не представлялось возможным. На Земле не умели получать снаряды такой мощности, как космическая частица. Даже речи не возникало о строительстве ускорителей. И никаких элементарных частиц, кроме электрона и протона, учёные не знали. Космическая частица могла стать первым проводником в микромир.

По этой дороге и пошёл Лайош Яноши после окончания университета. Его захватили трудности, которые возникли с первых же шагов этой увлекательнейшей области физики. Все понимали, что цель исследований — наблюдение и изучение взрыва от встречи космической и земной частиц материи. Но никто не знал, где произойдёт этот взрыв! Напрашивались три линии поведения: исследователю предоставлялась возможность либо гоняться за своеобразной «бабочкой» с сачком по всему земному шару. Либо сидеть и ждать, когда она пролетит под носом у исследователя. Либо — это и захватило Яноши — надо было организовать нужный эксперимент самому, поймать космическую частицу в нужном месте и в нужный момент, заставить её полностью проявить себя. В общем, надо было придумать, как разыграть «спектакль» по заранее намеченной программе.

Постепенно становилось ясно, что уникальный пролёт через прибор космической частицы можно перевести в разряд более простых: ловить не первичную космическую частицу, а тот ливень частиц, который она вызывает в атмосфере. Физики начали придумывать для этого самые различные способы, строили сложные приборы, целые системы счётчиков, часто разнесённых на огромные расстояния друг от друга, снова отправлялись в дальние путешествия и даже поднимались на воздушных шарах.

Яноши, ставший ассистентом Кольхерстера, начинает работать над созданием особых систем счётчиков космических частиц со свинцовыми фильтрами. Изменяя толщину этих фильтров, ему удаётся проследить цепную реакцию рождения элементарных частиц во всей её полноте. Яноши многое прояснил в процессе распада атомного ядра, определил мощность исходного излучения, законы распространения космических ливней. Он становится одним из ведущих учёных в области физики космических лучей. Его эксперименты создают ему репутацию виртуоза сложных физических измерений. Его называют критиком эксперимента. Когда наблюдения не поддаются однозначному толкованию, к нему идут за диагнозом. Он готовит две книги по теории и практике работы с космическими частицами, книги, которые станут настольными для всех изучающих эту область. Их особая ценность — в тесном слиянии искусного эксперимента и глубокой теории. Они демонстрируют, что в такой области исследований, как физика космических лучей, мало быть опытным, находчивым, изобретательным экспериментатором. Надо уметь подтвердить увиденное расчётом, то есть овладеть самым современным математическим аппаратом. И чтобы разобраться в законах микромира, нужно безупречно пользоваться методами теории относительности Эйнштейна.

Так слились воедино два потрясения юности — впечатление от парадоксальности теории относительности и мечта раскрыть тайну космического излучения. Слились, переплелись, стали основой научной деятельности Яноши.