На этом завершается процесс разделения зарядов в комплексе: хлорофилл приобретает положительный заряд, возникший из-за потери электрона, в то время как убихинон, присоединивший этот электрон, заряжается отрицательно. Оба этапа процесса переноса электрона протекают чрезвычайно быстро: первый занимает менее 10-11 секунды, второй — порядка 10-10 секунды. Следующие этапы процесса — перенос электронов на свободный (не связанный с железом) убихинон и восстановление хлорофилла цитохромом с. На это уходит 10-55—10-3 секунды..
Присоединив два электрона, убихинон связывает также и два протона, превращаясь в убихинол. Протоны (ионы Н+) черпаются из цитоплазмы, поскольку восстановление убихинона происходит вблизи той поверхности бактериальной мембраны, которая обращена внутрь клетки. Убихинол диффундирует на другую, внешнюю сторону мембраны и отдает электроны окисленному ранее цитохрому с. Окисление убихинола приводит к освобождению ионов Н+ снаружи клетки.
В результате на каждый квант поглощенного света через мембрану переносится один ион Н+. Расчет показал, что КПД такой системы невысок — около 20 процентов. Однако бактериальная клетка располагает и другим, более сложным механизмом, когда на один квант переносится два водородных иона. Это сравнительно медленный процесс, включающий ряд промежуточных стадий с участием убихинона и цитохромов. Как предполагает В. Самуилов, два режима: быстрый, но менее эффективный и медленный, но экономичный — могут попеременно включаться в зависимости от условий существования бактериальной клетки.
До сих пор мы вели речь о фотосинтезе у бактерий. Давайте обратимся к аналогичному процессу в зеленых растениях. По существу, растительный фотосинтез есть усложненный вариант бактериального. Начальные стадии двух этих процессов совпадают: поглощение светового кванта хлорофиллом, фотоокисление хлорофилла (реакция Красновского), затем восстановление пластохинона (аналога убихинона) и его окисление цитохромом.
Пока что идет все как у бактерий. Но уже следующая стадия оказывается иной. Вместо возвращения электрона с цитохрома на окисленный ранее хлорофилл происходят два совсем других процесса.
Один из них — расщепление молекулы воды на кислород, ионы Н+ и электроны. Именно этими электронами и восстанавливается окисленный пластохиноном хлорофилл. Что же касается цитохрома, то его электроны переносятся на другую молекулу хлорофилла, которая, так же как и первая, предварительно поглотила квант света и окислилась в реакции Красновского. Электрон, отнятый от хлорофилла при поглощении этого, уже второго по счету, кванта, переносится к углекислоте длинной цепочкой ферментов, участвующих в синтезе углеводов. В конечном итоге поглощение двух квантов света двумя разными хлорофиллами вызывает перенос одного электрона от воды к углекислоте.
Не менее существен и другой результат — перенос двух ионов Н+ через мембрану хлоропласта, в которой локализованы хлорофилл-белковые комплексы фотосинтетического аппарата. Механизм этого процесса генерации протонного потенциала еще ждет своих первооткрывателей.
Если сравнить системы, использующие свет у бактерий и растений, можно убедиться, что протонный потенциал — единственный первичный продукт циклической фотосистемы бактериального типа, в то время как нециклический фотосинтез растений не только генерирует протонный потенциал, но и служит поставщиком электронов. Эти электроны отнимаются от воды и используются при синтезе Сахаров, из которых затем образуется крахмал. Тем самым фотосинтез растений выполняет функцию, противоположную той, которая присуща процессу дыхания: при фотосинтезе расщепляется вода, а образуются кислород и органические вещества. При дыхании органические вещества окисляются кислородом с образованием воды.
Накопив крахмал в течение дня, растительная клетка окисляет его ночью. В результате усвоенная клеткой энергия Солнца может использоваться круглые сутки. Это несомненное преимущество растения перед бактерией-фотосинтетиком, неспособной к расщеплению воды и синтезу крахмала.
Фотосинтез без хлорофилла
Биофизик Ю. Владимиров рассказал мне однажды, что лет двадцать назад академик А. Красновский спросил как-то своих учеников:
— Какой самый простой признак фотосинтеза?
— Присутствие хлорофилла, — дружно ответили его молодые коллеги.
Догма о хлорофилле как непременном участнике и главном действующем лице фотосинтеза продержалась в биологии ровно 60 лет: с момента открытия хлорофилла Р. Вильштеттером в 1913 году вплоть до 1973 года, когда были опубликованы результаты первых опытов Д. Остерхельта и У. Стокениуса о необычной энергетической системе одного из видов солелюбивых бактерий.