Допустим, что в данном случае мы имеем дело только с тремя парами генов, которые встречаются в двух аллельных формах. Одна гомозигота будет иметь генотип ААВВСС, а другая - aabbcc. Все эти три пары аллелей влияют количественно, например, на величину семян. Однако на величину семян влияют не только наследственные факторы, но и факторы среды. Этих последних, для упрощения, не будем принимать во внимание.
Семена гомозиготных растений ААВВСС весят в среднем 54 мг, а семена растений с генотипом aabbcc весят - 30 мг. После скрещивания таких двух разных гомозигот получаем в поколении F1 гетерозиготное растение с формулой АаВbСс, семена которого в среднем весят 42 мг. Скрещивая между собой две гетерозиготы поколения F1, получим в поколении F2 растения с разными генотипами и с разным весом семян. Однако будет меньше категорий семян по весу, чем это вытекало бы из генетического расчета. Вероятно разные генотипы, которых при таком скрещивании будет 27, будут производить семена одного и того же веса. Можно легко понять, почему результат будет именно таким.
Допустим, что каждый ген, обозначенный заглавной буквой, независимо от того, является ли он геном А, В или С, увеличивает вес семян на 4 мг. У растения с формулой АаВВсс имеется три гена А, В и В, каждый из которых увеличивает вес семян на 4 мг, то есть вместе на 12 мг. Если гомозигота aabbcc давала семена весом 30 мг, то растение с генотипом АаВВсс даст семена весом 30+12 = 42 мг. Но также растения с другими генотипами, например, ааВВСс, АаВbСс, ааbВСС также давать будут семена того же веса, так как они содержат три гена, увеличивающих вес семян. Таким образом, благодаря полигении, особи с разными генотипами будут фенотипически идентичными. Несмотря на фенотипическую идентичность, мы имеем дело с генетическим различием. Пойдем, однако, дальше.
Если бы эти указанные выше три пары аллелей размещались в разных парах хромосом, имела бы место их свободная рекомбинация в процессе полового размножения. Но допустим, что они тесно связаны между собой. Ввиду того, что эти гены лежат очень близко друг к другу, связь между ними сильна и только в виде исключения может произойти замена их. Пользуясь примером, цитированным Шеппардом (Sheppard), обозначаем аллели, написанные заглавной буквой, знаком +, а прописной буквой, знаком -. Пусть в данной популяции имеется три вида хромосом: АВс или ++-, аВС или -++ и АbС +-+, то гаметы, имеющие по одной из этих трех хромосом, при оплодотворении могут привести к образованию следующих зигот: ++-/++- (ААВВсс), ++-/-++ (AaBBCc), ++-/+-+ (AABbCc), -++/-++ (aaBBCC) и другие.
Хотя популяция в нашем примере - пишет Шеппард - обладает актуальной наследственной изменчивостью, на которую может оказывать действие естественный отбор, она кроме того имеет значительный запас потенциальной изменчивости, которая может освободиться благодаря обмену генов и в соответствующее время стать актуальной изменчивостью. Благодаря обмену генов возникают хромосомы с таким расположением генов, какого перед этим не было: например, +++ или –.
Шеппард пишет дальше: “Если в нашей популяции наилучший вес равен 46 мг, то новые хромосомы, (возникшие благодаря обмену генов) будут отброшены из популяции в процессе отбора, так как в большинстве комбинаций они дают семена выше или ниже этого оптимума. Без прочной связи между хромосомами, отбор не мог бы так успешно тормозить изменчивость, так как этот вид изменчивости мог бы часто возникать в результате рекомбинации. Благодаря тому, что существует также сцепление между полигенами, отбор может успешно ограничивать изменчивость, так как актуальная изменчивость проявляется только постепенно (путем обмена генов), и бесполезные комбинации отбрасываются с такой же скоростью, с какой они возникают. Более того, частота рекомбинации подчиняется также генетическому контролю, и путем отбора может быть соответственно подобрана”. Таким образом, сцепленные системы полигенов ограничивают актуальную изменчивость популяции, которая, несмотря на это, обладает большим запасом потенциальной изменчивости. Эта изменчивость может быть использована тогда, когда условия окружающей среды изменятся безвозвратно.
Эти теоретические рассуждения нашли экспериментальное подтверждение. Обнаружено, что в популяции дрозофил, имеющих в среднем около 40 щетинок на теле, путем селекции можно получить популяции особей, у которых число щетинок в среднем будет равняться 55. В этом случае экспериментатор использовал комбинативную изменчивость, зависящую от генов, не сцепленных между собой, и скрещивая особи с возрастающим количеством щетинок, быстро привел к наследственному увеличению их количества.