Советский генетик, Карпеченко, получил путем скрещивания капусты (Brassica aleracea) с редькой (Raphanus sativus) аллотетраплоидный гибрид, который размножался как новый вид. В этом случае растения, взятые для скрещивания, относятся к двум родам - Brassica и Raphanus. Таким образом, была получена новая форма, Raphanobrassica. Как Brassica так и Raphanus имеют по 18 хромосом, Raphanobrassica имеет их 36, то есть является аллотетраплоидом.
Другим путем был искусственно получен новый вид дрозофил, который был назван Drosophila artificialis. Кожевников (1936) вывел из Drosophila melanogaster разновидность, скрещивая две формы этого вида, у которых отмечалось различие хромосом. В этом случае дело заключалось в комбинации двух транслокаций, то есть перемещения во второй и третьей паре хромосом.
Drosophila artificialis образуют четыре формы гамет. Из возможных 16 форм зигот только четыре являются жизнеспособными, другие гибнут в результате различных расстройств (нехваток и удвоений - дупликаций). Эти же четыре сформированы так же, как и родители. Таким образом, Drosophila artificialis с Drosophila melanogaster дает в результате нежизнеспособные гибриды.
Таким образом, была получена искусственная разновидность, бесплодная с материнскими формами.
Описанные выше примеры спорадического возникновения новых видов путем скрещивания относятся, однако, к редкостям, и этот механизм возникновения новых видов несомненно имел и имеет в процессе эволюции очень ограниченное значение. В настоящее время большинство авторов признает, что видообразование является, как правило, процессом, происходящим постепенно, путем накапливания незначительных генетических изменений в пределах популяции.
Рис. 67. Эволюция у Drepanidae с Гавайских островов. Вероятно, форма А была исходной формой, из которой развились все другие формы, характеризующиеся прежде всего изменениями формы клюва; по Е. О. Dodson.
По мнению большинства биологов те же факторы, которые приводят к генетическим изменениям популяции, действуют в процессе видообразования, а также и образования высших систематических единиц. Роль играет прежде всего время. Если один вид с течением времени может благодаря искусственному отбору образовать разные генетические популяции и расы, то со временем эти расы могут преобразоваться в разные виды. Другими словами, генетические открытые системы могут превратиться в генетически закрытые. Если, однако, этот процесс эволюционной дифференциации будет иметь в своем распоряжении соответственно длительное время, виды изменятся в отдельные роды, а роды могут образовать отдельные семейства и еще более высокие систематические единицы.
Наверняка не больше, чем несколько особей родом из Америки, дало начало одному семейству птиц (Drepaniidae) с Гавайских Островов (рис. 67). Это эндемическое семейство, известное только на Гавайях, состоит из 18 родов, к которым относится около 40 видов.
Естественное течение эволюционных процессов отображает каждая систематическая классификация. Родственные виды, то есть обладающие сходством, объединяем в один род. Родственные роды объединяем в одно семейство, семейства в отряды, а отряды в классы. Таким образом, каждая классификационная система является именно такой, какой бы следовало ожидать, приняв принцип постепенной эволюции.
В настоящее время большинство биологов принимает, что как в микроэволюции, так и в макроэволюции действуют те же самые факторы и так же, как сегодня, так и в прошедшие геологические эпохи. Таким образом, можно говорить о биологическом униформизме, который со времен Лайеля принят как основа в геологии.
Однако встает вопрос, может ли современная эволюционная теория естественного отбора, базирующаяся на генетических данных, полностью и без остатка объяснить нам эволюционное развитие форм жизни? Нам лично кажется, что в изучении факторов эволюции новые перспективы открывают нам исследования над неправильностью мутаций и преобразованием фенокопий в аналогичные наследственные изменения. Появление определенных мутаций при воздействии определенных условий окружающей среды является фактом, установленным у некоторых микроорганизмов, а прежде всего у дрожжей.
Встает вопрос, не откроет ли наука в будущем стимулов, которые аналогичным образом приводили к образованию определенных мутаций и у других организмов. Нам кажется, что отрицательный ответ в настоящее время был бы преждевременным и не лишенным догматизма. Кроме того, результаты исследований Уоддингтона (Waddington) и его сотрудников указывают на реальную возможность генетического закрепления у поколений вначале не наследственных изменений, то есть фенокопий, вызванных действием на определенном этапе развития определенных стимулов.