В других случаях естественный отбор привел к образованию у некоторых видов органов свечения, которые не излучают собственного света, а с этой целью используют живущие с ними в симбиозе светящиеся бактерии. Харви обнаружил у двух видов рыб в их парных органах свечения, находящихся по соседству с глазами, светящихся бактерий. Несмотря на то, что бактерии светятся постоянно, рыбы эти могут произвольно излучать свет. У одного из видов, рыба рефлекторно может опускать или поднимать кожную складку и таким образом открывать или прикрывать орган свечения, у другого вида целый орган при помощи мышц может вращаться внутрь и наружу. Благодаря этим приспособлениям рыбы могут произвольно регулировать излучение света, продуцируемого светящимися бактериями.
Харвиг считает, что выяснение образования одной из субстанций, производящей свет, люциферина, не представляет особых трудностей. Мутация одного из генов вызывает расстройство метаболизма, в результате чего происходят изменения в каком-то продукте обмена веществ. Этот измененный метаболит отличается между прочим тем, что является субстанцией, продуцирующей свет, то есть люциферином.
Биохимически и генетически этот вопрос является простым. Более сложным является вопрос возникновения окислительного фермента, то есть люциферазы. Если излучение света является даже в минимальной степени полезным для организма с той или другой точки зрения, то постепенное действие естественного отбора в конце концов приводит к развитию даже очень сложных органов люминесценции, которые мы встречаем, например, у рыб или глубинных головоногих.
В свете современных данных о действии отбора, полученных при изучении этого процесса как в природе, так и в искусственных условиях, примеры, приводимые разными авторами, считающими, что лишь большие и внезапные мутационные изменения могли оказаться решающими в возникновении новых органов, как, например световых, много теряют на своей силе. Сторонником таких взглядов был, например, Р. Гольдшмидт, который подробно изучил один из интересных примеров люминесценции в животном мире.
Личинки мухи Arachnocampa luminosa живут в пещерах Новой Зеландии. Другие мухи, относящиеся к тому же семейству, питаются грибницей, тогда как Arachnocampa является плотоядной. Личинки живут в пещерах вблизи воды, где массово выводятся мушки, похожие на комаров. Зрелые Arachnocampa светятся слабо, тогда как личинки излучают довольно интенсивный свет. Кроме того, личинки выделяют нити липкой слизи, которая свешивается со стен пещер к поверхности воды. Вылупившихся в воде маленьких мушек, похожих на комаров, привлекает свет личинок Arachnocampa, они приклеиваются к липким нитям и их съедают светящиеся личинки.
Гольдшмидт считает, что в этом случае одновременно должны были возникнуть мутационные изменения в целом ряде признаков. Прежде всего личинки, живущие в темных и влажных пещерах, излучают свет в расширенных частях четырех Мальпигиевых канальцев, то есть органов выделения. Кроме того они выделяют липкие нити, питаются мясной пищей, находят подходящие места, где могут встретить соответствующую добычу, они должны обладать соответствующим инстинктом и приспособить весь свой жизненный цикл к определенным экологическим условиям.
Согласно Гольдшмидту, совершенно невероятно, чтобы все эти различные приспособления возникали независимо и отдельно друг от друга, так как в этом случае они не имели бы никакого специального значения. При более точных исследованиях обнаружено, что в действительности все эти качества могли развиться постепенно и независимо. Известны формы, родственные Arachnocampa, которые избегают света, хотя не обладают способностью к люминесценции. Другие излучают свет клетками жирового тела, рассеянными между внутренними органами. Еще другие могут выделять липкую слизь. Имеются виды, которые не избегают мясной пищи. У одного из американских видов (Platyura) личинки люминесцируют и выделяют слизь. Они также являются плотоядными и питаются бескрылыми насекомыми. На Гватемале описан вид, выделяющий нити слизи.
Таким образом, видим, что выяснение эволюционного развития способности к люминесценции у Arachnocampa не нуждается, как это предполагал Гольдшмидт, в паре или одной большой мутации, приводящей сразу к далеко идущим и гармоническим морфологическим, физиологическим, экологическим и этиологическим приспособлениям. Если не забывать, какую решающую роль в действии отбора играет время, ничто не мешает объяснить его действием даже так сложных приспособлений, которые мы встречаем у Arachnocampa.