Выбрать главу
SPANISH ROCKETS IN WAR

Small solid-fuel rockets were used during the Spanish Civil War of 1936–39. The Spanish authorities modified rockets designed for use in ocean rescue missions for delivering propaganda leaflets behind enemy lines. The sea-rescue rocket nose cones were designed to open at a predetermined altitude to release a payload of the propaganda leaflets, which were printed on an especially thin paper to help conserve weight. The rockets were reliable, and easily manufactured; yet they were in principle little different from those used in the Napoleonic era. As the omission of rockets from the restrictions imposed by the Treaty of Versailles reminds us, the rocket was yet to be recognized as a major weapon of war — only the German enthusiasts had this futuristic vision.

As a result a 21in (53cm) rocket weighing 3.5lb (1.5kg) was put into production. It contained 1.6lb (720g) of Pentolite high explosive and was fired from a launch tube which could be carried by a soldier and fired from shoulder-height during battle. Designated the M9, and originally nicknamed ‘the stovepipe’, the device acquired its better-known name during an early test, when a major asked what the device was. When told, he laughed: ‘It looks more like Bob Burns’ Bazooka!’ Burns had been a popular vaudeville performer in the 1930s, and featured a tubular brass instrument in his act which he called the ‘bazooka’. The name stuck.

During the early years of World War II the weapon was used by American troops and bazookas were also supplied to Soviet forces. In 1942 some were captured by the Germans from Russian soldiers and later from Americans in North Africa and the secret was out. One survey failed to find any soldier — after many bazookas had been fired — who had reported the destruction of a single enemy tank, and so the weapon was withdrawn. The bazooka was improved and reintroduced later in the war, but continued to pose problems of its own. The smoke trail led the enemy to the exact position of the person who had launched the missile, and the soldiers were always in mortal danger when they rose to launch the weapon. The rockets proved to be unreliable, and in the later years of the war the new German tanks had thicker steel plating that was impervious to bazooka attack.

In the end they seemed to be best employed against enemy positions, rather than as anti-tank weapons, and General Dwight Eisenhower was to describe the bazooka as ‘one of the four Tools of Victory’ (along with the jeep, the Dakota and the atomic bomb). The design was subsequently improved further and bazookas went on to be used in Korea and Vietnam. Their precise value in World War II remains uncertain, though the bazooka was certainly a powerful device in the hands of a soldier and did much to reassure American infantrymen faced with battling German tanks and stubborn defenders.

TERROR FROM THE SKY

In their early years at Peenemünde, the German rocket researchers had no difficulty in attracting the funds they needed. Money was printed in large amounts and military expenditure for the Army now seemed to have no limits.

Von Braun was in his element at Peenemünde, and the design of the great A-4 rocket proceeded apace. It was to be based on the successful design of the A-5, with a redesigned control system and updated construction. The A-5 had reached an altitude of 35,000ft (10,000m) in tests during 1938, and the A-4 was designed with the benefit of the results of these pioneering tests. But things changed when Hitler began to anticipate an early end to hostilities, with Germany reigning supreme across Western Europe, and as a result research at Peenemünde was reduced. In a scaled-down programme of research, the engineers contented themselves by designing improved servo-control systems and new, high-throughput fuel pumps were systematically developed. Rocket development had essentially been put on hold.

Within two years the tide was turning, and the need for rocket research began to re-emerge. Work on the A-4 picked up again and on 13 June 1942 the first of the new monster rockets was ready for test firing. The rocket was checked and re-checked. Meticulous records were maintained of every aspect of its functioning. It stood 46ft 1.5in (14.05m) tall, weighed 12 tons, and was fuelled with methyl alcohol (methanol). The oxidant, liquid oxygen, was pumped in just prior to launch. The pumps were run up to speed, ignition achieved and the rocket rose unsteadily from its launch pad. In a billowing cloud of smoke and steam it began to climb, rapidly gaining speed, and then — at just the wrong moment — the propellant pump motor failed. The rocket staggered for a moment and crashed back onto the launch pad, disintegrating in a huge explosion. The technicians were terrified and were lucky to escape.

On 16 August 1942 a second A-4 was tested. Once again, the fuel motor pump stopped working but this time it failed later in the flight, after the rocket had already passed through the sound barrier. The third test was a complete success. It took place on 3 October 1942 and this rocket was fired out along the coast of Pomerania. The engine burned for over a minute, boosting the rocket to a maximum altitude of 50 miles (80km). It fell to earth 119.3 miles (192km) from the launch pad. The age of the space rocket had arrived, and the ballistic missile was a reality. The design of the A-4 rocket could now be fine tuned and — given time — the complex design could be optimized for mass production. The Nazis now had their new Vergeltungswaffe (‘retaliatory’ or ‘reprisal’ weapon). The term was important; although Hitler saw these as weapons of mass destruction, he hoped that the world — instead of seeing him as the aggressor — would regard him as simply responding to Allied attacks. The ‘V’ is sometimes translated into English as ‘vengeance’, but that is not right as the term in German connotes reprisal. The first of such weapons was their V-1 cruise missile, the ‘buzz-bomb’ and now they had the V-2. It would surely strike terror into the hearts of those who challenged German supremacy.

Aspects of the design were refined and developed by teams in companies including Zeppelin Luftschiffbau and Heinkel, and the final production version of the V-2 was a brilliantly successful rocket. Over 5,000 would be produced by the Germans. The production model stood 46ft (14m) tall, was 5ft 5in (1.65m) in diameter, and weighed over 5 tons of which 70 per cent was fuel. The tanks held 8,300lb (3,760kg) of fuel and just over 11,000lb (5,000kg) of liquid oxygen at take-off. The combustion chamber consumed 275lb (125kg) per second, emitting exhaust gases at a velocity of 6,950ft/s (2,200m/s). The missile was steered by vanes in the exhaust and could land with an accuracy better than 4 per cent, or so claimed the designers. No metal could withstand the intense heat, so these internal fins were constructed from carbon. They ablated in the heat, but could not burn away rapidly due to the lack of free oxygen and lasted long enough for the entire rocket burn. For the time, the V-2 was — and it remains — an extraordinary achievement made in record time.