Если юмор приоткрывал завесу над, так сказать, лирической стороной души Сергея Ивановича, то было нечто, приоткрывавшее ту сторону души, где жили цели и идеалы. Это упорство, с которым ученый постоянно обращался к тому, что его всего больше мучило и волновало.
Не довольствуясь зрительными опытами для изучения фотонных флуктуаций, Сергей Иванович параллельно старался обнаружить квантовые черты света и в таких оптических явлениях, которые считались раньше типично волновыми.
Сюда относилось, например, явление интерференции света.
Само слово «интерференция» происходит от латинских корней «интер» — взаимно, между собою, и «ференс» — несущий, переносящий. Термин был введен для обозначения явления сложения в пространстве двух или нескольких волн. Применительно к распространению света это наложение друг на друга световых пучков. В одних местах пространства подобные пучки усиливают друг друга, в других — взаимно гасят. На экране появляются чередующиеся темные и светлые круги или полосы.
С точки зрения квантовой теории при очень малых интенсивностях света классическая интерференционная картина должна нарушаться. Темные места, в которые фотоны не попадают ни при слабых, ни при сильных интенсивностях интерферирующих лучей, должны, естественно, остаться темными, неизменными. Зато свечение ярких полос должно флуктуировать во времени, когда на них будет падать разное количество световых квантов.
— Картина эта механически наглядна, — сказал как-то Сергей Иванович молодому научному сотруднику Е. М. Брумбергу. — Для ее проверки надо лишь создать достаточно точную установку. Но ведь она уже есть: та, на которой проводились опыты по изучению квантовых флуктуаций. Мне кажется, эта установка вполне пригодна для проверки квантовой картины интерференции.
Вавилов и Брумберг ставят соответствующие опыты и действительно обнаруживают, что темные места на интерференционной картине остаются темными всегда, светлые же временами меняют свою яркость.
Результаты своих исследований два физика излагают в статье «Статистическая структура интерференционного поля», которую публикуют в 1934 году. Интересные опыты Вавилова и Брумберга показывают впервые, что даже в типично волновых процессах можно обнаружить квантовые свойства, свойства своеобразных частиц. То, что постепенно стало называться «корпускулярно-волновым дуализмом света» (то есть связываться с представлением о мельчайшем «зернышке» света как одновременно и частице и волне), выступает здесь с полной убедительностью.
После опытов с интерференцией света Вавилов осуществляет ряд других удачных опытов с целью вновь и вновь подтвердить правоту квантовой теории света. Как маг-волшебник, обращается он то к одному, то к другому «классически-волновому» процессу и, «взмахнув волшебной палочкой», превращает его в четко выраженный корпускулярный.
Однажды поместив на пути пучка зеленого естественного света так называемую бипризму Френеля, преломляющее ребро которой расположено горизонтально, Сергей Иванович получил в поле зрения два симметрично расположенных зеленых пятна. Уменьшая освещенность пятен до допустимого предела, наблюдатель видел, как обе точки совершенно отчетливо флуктуировали одна относительно другой и весьма редко они были видны в одно и то же время. «Это явление, — писал Вавилов, — независимых относительных колебаний когерентных (то есть вышедших из одного источника и обладающих постоянной разностью фаз. — В. К.) лучей имеет катастрофическое значение для волновой теории, если пытаться ее защищать в данном случае».
Не менее остроумные эксперименты были проведены с поляризованным («расщепленным» во взаимно перпендикулярных направлениях) светом. С помощью так называемой призмы Волластона Сергей Иванович получал на экране два пятна, освещаемые поляризованными зелеными лучами. С точки зрения классической волновой теории оба пятна должны были бы иметь одинаковую яркость. Однако, когда интенсивность исходного естественного пучка достигала минимума, два зеленых пятна флуктуировали совершенно независимо друг от друга. Это убедительно доказывало, что оба поля освещались независимо отдельными световыми квантами.
Все же одно оптическое явление — одно-единственное! — Вавилову не удалось «превратить» в характерное квантовое явление. Не удалось по той простой и уважительной причине, что в этом случае не могла помочь даже высокая чувствительность глаза; лабораторная же техника не располагала нужной сверхчувствительной аппаратурой. Как, кстати, не располагает ею и сейчас, благодаря чему и в наше время, в эпоху выхода человека в космос и всяческих чудес микромира, задача, не решенная Вавиловым, продолжает оставаться нерешенной.