После открытия, сделанного Планком в 1900 году, история становления квантовой теории напоминает историю становления теории относительности, с той разницей, что первая заняла гораздо больше времени. Важнейшие экспериментальные данные в исследованиях атомных спектров и в химии были получены уже на рубеже столетий и накапливались в течение первых двух десятилетий XX века. Затем, в 20-е годы, на основе этого богатейшего материала была разработана математическая формулировка квантовой и волновой механики и в результате было достигнуто наконец полное понимание квантовомеханических явлений. За 30 лет, прошедших с тех пор, в среде физиков выработался язык, на котором они говорят об атомарных явлениях. На этот раз, однако, он не согласуется с искусственным языком математики. Вместо этого сложился особый прием: для описания мельчайших частей материи используются попеременно различные, противоречащие друг другу наглядные образы. В зависимости от характера конкретного эксперимента определяется, целесообразно ли в данном случае говорить о волне или о частице, о траекториях электрона или о стационарных состояниях. При этом, однако, мы всегда ясно сознаем, что подобные образы — лишь неточные аналогии, что мы имеем дело всего лишь с условными событиями и пытаемся с их помощью приблизиться к реальному событию.
Если же требуется точная формулировка, чаще всего приходится ограничиваться искусственным языком математики.
Такой способ формирования языка связан прежде всего с основополагающим парадоксом квантовой теории. Всякий эксперимент независимо от того, относится ли он к явлениям повседневной жизни или атомной физики, необходимо описывать в понятиях классической физики. Понятия классической физики образуют тот изначальный язык, на котором мы планируем опыты и фиксируем их результаты. Мы не в состоянии заменить его другим. Тем не менее законы природы ограничивают применимость этих понятий так называемыми соотношениями неопределенностей. Например, мы не можем точно знать положение элементарной частицы и одновременно с той же степенью точности — ее скорость. Чем точнее измеряем мы это положение, тем менее точно наше знание о скорости, и наоборот. Произведение обеих неточностей равно постоянной Планка, деленной на массу соответствующей частицы. Н. Бор говорил о дополнительности понятий места и скорости и указывал, как правило, на то, что в атомной физике мы вынуждены пользоваться разными способами описания, исключающими, но также и дополняющими друг друга, адекватное же описание процесса достигается в конечном счете только игрой различных образов. Ситуация дополнительности привела к тому, что физик, говоря о событии в мире атомов, нередко довольствуется неточным метафорическим языком и, подобно поэту, стремится с помощью образов и сравнений подтолкнуть ум слушателя в желательном направлении, а не заставить его с помощью однозначной формулировки точно следовать определенному направлению мысли. Речь становится однозначной, только если мы пользуемся искусственным языком математики, корректность которого подтверждается опытом и не вызывает сомнений.
Вообще говоря, нет принципиальных оснований отрицать возможность полного согласования разговорного слова с искусственным языком математики, и можно задаться вопросом, почему в квантовой механике этого не произошло, тогда как в теории относительности разговорный язык вполне естественно слился с математическим. Подлинная причина столь различного хода событий кроется, пожалуй, в том примечательном обстоятельстве, что в языке, соответствующем математическому формализму квантовой теории, уже нельзя было бы опираться на классическую аристотелевскую логику; ее пришлось бы заменить другого рода логикой. К счастью, математики давно уже поняли возможность существования таких неаристотелевских логик, исследовали их и выяснили принципиальные проблемы, связанные с их использованием. Тем не менее неаристотелевская логика столь еще непривычна для человеческого мышления, что физики вряд ли оказались бы в состоянии воспользоваться ею. Вот почему язык физиков в действительности развивался по-другому. И все же поучительно познакомиться с логикой языка, соответствующего математической схеме квантовой теории.
Логика, называемая квантовой, была проанализирована уже в 30-е годы Г. Биркгофом и И. фон Нейманом, а недавно вновь подробно исследована К. Ф. фон Вейцзеккером[82]. Прежде всего здесь должна утрачивать силу одна из основополагающих аксиом аристотелевской логики, то есть логики повседневной жизни. Речь идет о принципе, согласно которому либо утверждение некоего высказывания, либо его отрицание должно быть верным. Из двух высказываний, например «Здесь есть стол» и «Здесь нет стола», одно обязательно должно быть верным, а другое ложным, третьего не дано: terbium non datur. В квантовой логике вместо этой аксиомы выдвигается, согласно Вейцзеккеру, следующий постулат: в случае простой альтернативы отмеченного типа высказыванию приписывается определенная истинность, которую можно охарактеризовать двумя комплексными числами. Здесь, разумеется, неуместно входить в детали; отметим лишь, что эти числа позволяют образовать третье, именуемое значением истинности; оно равно 1, если высказывание верно, и 0, если оно ложно. Допустимы, однако, и промежуточные значения, например значение 1/2, когда высказывание с равной вероятностью может оказаться как истинным, так и ложным. Существуют, следовательно, промежуточные ситуации, для которых остается неопределенным, ложно или истинно высказывание, причем слова «остается неопределенным» ни в коем случае нельзя понимать просто в смысле незнания истинного положения дел. Высказывание с промежуточным значением истинности нельзя, стало быть, истолковывать так, что-де «в действительности» истинно либо одно, либо другое альтернативное высказывание и неизвестно лишь, какое из них считать таковым. Высказывание с промежуточным значением истинности скорее уж вовсе не поддается выражению на обыденном языке. Вейцзеккер называет такое высказывание дополнительным по отношению к простым альтернативным высказываниям.