Выбрать главу

Вернемся, однако, к проблеме понимания, а тем самым — к естественным наукам. Пестрое многообразие явлений может быть понято потому, говорят Пифагор и Платон, что в основе его лежит единый, доступный математическому описанию принцип формы. По сути дела, здесь уже предвосхищена вся программа современного точного естествознания. В древности, однако, она не могла быть осуществлена, потому что почти полностью отсутствовало эмпирическое знание деталей природных процессов

Первая попытка заняться также и этими деталями была, как известно, предпринята в философии Аристотеля. Но колоссальное обилие частностей, сразу же открывающееся наблюдательному взору естествоиспытателя, при полном отсутствии какой бы то ни было точки зрения, которая позволила бы распознать здесь некий порядок, заставило отказаться от искомых Пифагором и Платоном единых формальных принципов и выдвинуть на первый план описание частностей. Так уже в ту эпоху обнаружилось противоречие, сохраняющееся и поныне, например, в споре между экспериментальной и теоретической физикой, — противоречие между эмпириком, который в процессе тщательной и добросовестной обработки мелочей впервые создает предпосылки для понимания природы, и теоретиком, конструирующим математические образы, в соответствии с которыми он стремится упорядочить и понять природу. Эти математические образы оказываются истинными идеями, лежащими в основе природных событий, не только потому, что они правильно описывают опыт, но также и прежде всего в силу своей простоты и красоты. Уже Аристотель говорил о пифагорейцах критически, как эмпирик. Они, утверждал он, «не ищут объяснений и теорий для фактов, а изыскивают факты для заранее известных теорий и излюбленных ими мнений, как бы соучаствуя в построении Вселенной»[105]. Оглядываясь на историю точного естествознания, можно, пожалуй, утверждать, что правильное описание явлений природы сложилось в напряженной противоположности обоих подходов. Чистая математическая спекуляция бесплодна, если в своей игре со всевозможными формами она не находит пути назад, к тем весьма немногим формам, из которых реально построена природа. Но и чистая эмпирия бесплодна, поскольку бесконечные, лишенные внутренней связи таблицы в конечном счете душат ее. Решающее продвижение вперед может быть результатом только напряженного взаимодействия между обилием фактических данных и математическими формами, потенциально им соответствующими.

Но античность не смогла выдержать этого напряжения, и оба пути — к пониманию и к прекрасному — надолго разошлись. Значение прекрасного для понимания природы стало вновь очевидно лишь после того, как в начале Нового времени от Аристотеля опять обратились к Платону. И только благодаря этому повороту открылась вся плодотворность пифагорейско-платоновского образа мыслей.

С предельной ясностью это показывают приписываемые Галилею знаменитые опыты с падением тел на «падающей» башне в Пизе. Не обращая внимания на авторитет Аристотеля, Галилей начал с тщательных наблюдении, однако, следуя учению Пифагора и Платона, он пытался найти математические формы, соответствующие эмпирически полученным фактам, и таким образом установил свои законы падения. Но чтобы распознать в явлениях красоту математических форм, он должен был — и это весьма существенно — идеализировать факты или же, как критически выразился бы Аристотель, исказить их. Аристотель учил, что все движущиеся тела, если на них не действуют внешние силы, в конце концов приходят в состояния покоя, и это соответствовало обыденному опыту. Галилей утверждает, напротив, что в отсутствии внешних сил тела сохраняют состояние равномерного движения. Галилей мог отважиться на подобное искажение фактов, сославшись на то, что движущимся телам всегда оказывает сопротивление трение и в действительности движение длится тем большее время, чем лучше удается изолировать его от действия силы трения. Искажая и идеализируя таким способом факты, он получил простой математический закон, и это было началом точного естествознания Нового времени.