41
34 Имеются в виду работы А. Эйнштейна 1905–1907 гг. о квантах света и удельной теплоемкости, его работа 1917 г. о коэффициентах вероятности излучения, а также работы Н. Бора и А. Зоммерфелъда по квантовой теории атома 1913–1917 гг.
(обратно)42
35 Соотношения неопределенностей В. Гейзенберг получил в 1927 г. и опубликовал в статье «О наглядном содержании квантово-теоретической кинематики и механики» (русский перевод — УФН, 1977. Т. 122, вып. 4, с. 651–671). Принцип дополнительности был сформулирован Н. Бором в том же году в работе «Квантовый постулат и новейшее развитие атомной теории» и разработан в последующих статьях//Бор Н. Избранные научные труды в двух томах. М., «Наука», 1971. Т. 2.
(обратно)43
36 Паскуаль Йордан (1902–1981) — физик-теоретик, один из создателей квантовой механики. С начала 30-х годов публикует — помимо физических — работы о применении квантовой физики в биологии. См., в частности: Jordan Р. Die Quantenmechanik und die Gnindprobleme der Biologie und Psychologie//Naturwissenschaften, 1932, Bd. 20, S. 815. Jordan P. Physik und das Geheimnis der organischen Lebens. Berlin, 1945.
(обратно)44
37 Ко времени опубликования Д. И. Менделеевым «системы элементов» (17 февраля 1869 г.) было известно 63 элемента. Вскоре были открыты предсказанные Менделеевым галлий (1875 г.), скандий (1879 г.) и германий (1886). К настоящему времени в Таблицу включено 109 элементов, хотя последние из них представляют собой крайне неустойчивые продукты искусственного ядерного синтеза.
(обратно)45
38 В конце 40-х — 50-х гг. был открыт целый ряд новых нестабильных частиц: π-мезоны, К-мезоны, λ-гиперон. В то время когда была прочитана эта лекция (1952 г.), Гейзенберг пытался построить единую нелинейную спинорную теорию материи, которая охватывала бы все известные к тому времени элементарные частицы. См.: Гейзенберг В. Введение в единую полевую теорию элементарных частиц. М., «Мир», 1968 г. Ряд относящихся к этой теории работ опубликован также в русском переводе в сб.: Нелинейная квантовая теория поля. М., 1959 г.
(обратно)46
39 Так как все взаимодействия передаются со скоростью, не большей скорости света, то причинно зависеть от некоего события в точке О могут события только в тех точках четырехмерного пространства-времени, в которые успевает дойти световой сигнал из точки О. Эти события образуют область абсолютно будущего для события в точке О. Аналогично определяется область абсолютно прошлого, — область, откуда световой сигнал успевает дойти до точки О. Эти области разделены областью событий, которые не могут быть причинно связаны с событием в точке О, поскольку световой сигнал ни туда, ни оттуда дойти не успевает. В разных системах отсчета эти события могут происходить то раньше, то позже события в точке О. Поэтому их нельзя отнести ни к прошлому, ни к будущему.
(обратно)47
40 Бесконечности возникают так же, как и в классической электродинамике, из-за того, что используется представление о точечных частицах. Незадолго до этой речи Гейзенберга, в конце 40-х годов С. Томонага, Р. Фейнману, Ю. Швингеру, Ф. Дайсону удалось создать последовательные методы устранения бесконечностей в квантовой теории поля (так называемые «перенормировки»), при которых конечный результат получается после вычитания из одной бесконечности другой (см. сборник «Новейшее развитие квантовой электродинамики». М., 1954) но эти методы в течение ряда лет вызывали скептицизм у ряда физиков старшего поколения, в том числе, как видно, и у Гейзенберга.
(обратно)48
41 Хотя для ряда открытых в последние десятилетия частиц удавалось сравнительно точно предсказать значение их масс, общее объяснение спектра масс элементарных частиц остается и поныне одной из труднейших нерешенных проблем релятивистской квантовой физики.
(обратно)49
© Die Rolle der Elementarteilchenphysik in der gegenwärtigen Entwicklung der Naturwissenschaft. R. Piper und Co., Verlag, München 1977.
42 Доклад на заседании Шведской Академии наук 24 апреля 1974 г. в Стокгольме. Первая публикация на английском языке: Heisenberg W. The role of elementary particle physics in the present development of science//«Documenta» der Stockholmer Akademie, 1974.
(обратно)50
43 В 1938–1939 гг. Г. Бете — американский физик немецкого происхождения — открыл основные циклы термоядерных реакций в звездах — водородный и углеродный (Нобелевская премия, 1967 г.). Последний цикл независимо открыл также К. Вейцзеккер. О. Ган — немецкий физик и радиохимик — совместно с Ф. Штрассманном открыл в 1938 г. явление деления ядер урана под воздействием медленных нейтронов (Нобелевская премия по химии, 1944 г.).
(обратно)