Выбрать главу

Итак, физика частиц имеет интересные области применения в физике твердого тела, в ядерной физике и в астрофизике, и все же применений этих недостаточно, чтобы объяснить огромный интерес людей к физике частиц и затрачиваемые на нее огромные усилия. Как раз в последние годы поднят вопрос о том, не могут ли законы природы, с помощью которых интерпретируется поведение частиц, служить универсальной базой для всех ветвей физики, т. е. не идет ли здесь речь о фундаментальном законе. Собственно говоря, атомная физика, или учение об атоме, с самого начала ставила себе целью выявление фундаментальных законов, которые позволили бы достичь понимания природы. К данному аспекту проблемы я хотел бы вернуться в последней части своего доклада, а пока остановлюсь на грандиозной экспериментальной и технической работе в области физики элементарных частиц.

С экспериментальной точки зрения физика частиц есть естественное продолжение или расширение физики атома и физики ядра. На другие части атома, на его электронные оболочки, стоявшие в центре внимания физиков в начале 20-х годов, можно воздействовать с помощью незначительных сил. Электрические и магнитные поля позволяли вызвать изменения, зримо отражавшиеся в спектре атомов. Электроны, ускоренные в разрядной трубке при напряжении в несколько вольт, могли приводить атом в возбужденное состояние, и излучавшийся таким атомом свет предоставлял ученому ценную информацию о динамической структуре оболочки. Соответственно тогдашние опыты проводились в небольших лабораториях с помощью оборудования, крайне дешевого в сравнении с инструментарием современных исследовательских институтов. Изучение атомного ядра с помощью такого оборудования оказалось невозможным. Чтобы привести ядро в возбужденное состояние, необходима энергия, примерно в миллион раз большая, чем та, которая используется для возбуждения электронных оболочек.

Поэтому Кокрофт и Уолтон сконструировали высоковольтную установку, или каскадный генератор, Лоуренс[54] построил циклотрон, и с помощью протонов, ускорявшихся под напряжением порядка миллиона вольт, удалось приводить атомные ядра в возбужденное состояние, превращать их в другие ядра и образовывать из них многие новые, нестабильные радиоактивные ядра. Параллельно изобретались новые инструменты для фиксирования фрагментов ядра — разнообразные счетчики, камеры Вильсона,х автоматически начинавшие действовать в начале процесса; разрабатывались новые методики замера столкновений. Таким путем ядерная физика стала важной отраслью науки в 30-е годы еще прежде того, как Отто Ган открыл расщепление урана, проторив дорогу неслыханному техническому развитию. Практические применения и их политические последствия смогли теперь, по крайней мере задним числом, послужить оправданием для крупных ассигнований, в которых нуждались ядерные исследования. Нет ничего удивительного в том, что ассигнования на ядерные исследования в США за годы войны возросли до миллиардов долларов и отношение общества к современной технологии радикально изменилось. Оставалась, правда, еще третья ступень, которую физики предвидели еще до войны.

В космическом излучении иногда обнаруживаются частицы с энергией, в тысячу и более раз превышающей энергии, потребные для превращения ядра. Столкновение подобных частиц могло привести к превращению или расщеплению даже тех объектов, которые считались элементарными частицами, последними неделимыми единицами материи, а именно протонов и электронов. Теоретические соображения позволяли предположить, что при столкновении двух элементарных частиц очень высоких энергий могут возникнуть новые частицы, а при известных обстоятельствах множество частиц, причем подобные процессы не следует рассматривать как деление, расщепление или возбуждение частиц; здесь надо говорить о превращении энергии в материю. В предвоенных экспериментах с космическим излучением были получены некоторые результаты, ориентировавшие мысль ученых в этом направлении, но ни один эксперимент не дал недвусмысленных свидетельств в пользу возможности образования многих частиц.