Выбрать главу

Стоило бы упомянуть еще и о другом, поистине примечательном случае, когда мю-мезоны способствовали прояснению фундаментальнейших вопросов. Незадолго перед войной теория относительности не признавалась политическими правителями в нашей стране, причем идея замедления времени при движении тел критиковалась как абсурд и как чисто теоретическая спекуляция. Проходили даже специальные разбирательства по вопросу о том, следует ли преподавать теорию относительности в университетах. На одном из таких обсуждений я выступил с предположением, что время распада мю-мезонов должно зависеть от скорости этих последних; мю-мезоны, скорость движения которых приближается к скорости света, распадаются медленнее тех, чья скорость меньше, — такое предсказание позволяла сделать теория относительности. Предсказание экспериментально подтвердилось; замедление времени удалось непосредственно пронаблюдать, и тем самым путь для университетских лекций о теории относительности был расчищен. Я остался навсегда благодарен мю-мезонам за эту поддержку.

Вскоре после войны Пауэлл в Бристоле открыл пи-мезон, играющий очень важную роль в большинстве феноменов космического излучения. Этот объект удовлетворяет всем условиям, которые Юкава сформулировал для материального носителя сильного взаимодействия; как выяснилось позднее, он был не единственной частицей этого рода, но в качестве адрона с наименьшей массой он был вскоре обнаружен почти во всех процессах очень высоких энергий. К тому же пи-мезон распадается на один мю-мезон и одно нейтрино, так что попутно было прояснено возникновение мю-мезонов.

Подобно мю-мезонам, пи-мезон тоже не привел к фундаментальным сдвигам в основаниях физики. Он подтвердил лишь, что разнообразные частицы являются стационарными состояниями системы «материя», отличающимися друг от друга разным поведением при преобразовании основной группы. Группы более фундаментальны, чем частицы.

В те годы помимо Лоренцовой группы теории относительности из фундаментальных групп была известна только изоспиновая. Она была открыта в 1932 году в связи с исследованиями по ядерной физике; но лишь пи-мезоны позволили вполне понять ее фундаментальный характер. Эксперименты над пи-мезоном в космическом излучении показали, что изоспиновая группа дает точную симметрию для сильного взаимодействия, и лишь электромагнитное взаимодействие, а также более слабые взаимодействия нарушают эту симметрию. Для истолкования этих данных послужила гипотеза о том, что закон природы, лежащий в основе спектра частиц, строго инвариантен при изоспиновом преобразовании и что отклонения от этой симметрии вызываются асимметрическим, вырожденным основным состоянием. Аналогичные ситуации хорошо известны в квантовой механике твердых тел.

Почти одновременно с пи-мезонами в космическом излучении были открыты другие частицы — тяжелее пи-мезонов и немного «странные» в своем поведении. У них была довольно-таки большая продолжительность жизни — порядка 10-10 сек, и поэтому их следы можно было наблюдать в камере Вильсона или в эмульсиях. Однако эту большую продолжительность жизни было невозможно понять, учитывая лишь уже известные к тому времени симметрии и соответствующие квантовые числа (барионное число, изоспин, орбитальный момент); они заставляли ожидать намного более краткую продолжительность жизни, и потому поведение новых частиц было странным. Верную интерпретацию дал Пайс в 1952 году; он ввел новое квантовое число, так называемую странность, и соответствующую симметрию, или свойство преобразований. Таким образом, исследование космических лучей привело к открытию новой группы симметрии; а поскольку, как я уже упомянул выше, группы важнее, чем частицы, это стало еще одним очень существенным вкладом в фундаментальные проблемы физики.