Известны некоторые существенные инварианты динамики материи: Лоренцова группа и изоспиновая группа SU2. Масштабную группу тоже, пожалуй, следовало бы причислить к фундаментальным инвариантам. Но я не хотел бы подробно обсуждать симметрии динамического закона. Вернусь вместо этого к космическому излучению. Как исследование космического излучения, или, говоря шире, астрофизическое исследование, может способствовать нашему познанию динамики материи?
Сперва два слова о причинности. Из дисперсионных соотношений мы знаем, что взаимодействие в материи следует закону причинности. Точная математическая формулировка этого положения, возможно, неизвестна нам в окончательном виде, но у нас есть неплохие основания предполагать, что взаимодействие может быть определено локально, как, скажем, в квантовой электродинамике. Нелокальность кулоновской силы этому не противоречит. С учетом данной ситуации можно сделать правдоподобное допущение, что исследование материи чрезвычайно высокой плотности предоставит нам прямую информацию об этом локальном взаимодействии и тем самым о динамике материи.
В космическом излучении есть другая специальная область, где в той же проблеме динамики материи можно приступить с совершенно иной стороны. Когда две частицы крайне высоких энергий сталкиваются между собой, то в первый момент столкновения мы имеем маленький диск чрезвычайно плотной материи, который затем взрывается и, теряя свою плотность, распадается в конечном счете на многочисленные частицы. Этот хорошо известный процесс множественного образования частиц, естественно, тем более интересен, чем выше была энергия сталкивающихся частиц. Если первичная частица космического излучения имеет энергию 106 ГэВ, то плотность возникающего при столкновении диска может вначале в тысячу раз превысить плотность нейтронной звезды.
Изучение поведения ливня таких космических лучей крайне высоких энергий должно поэтому дать ценнейшую информацию о динамике материи. В данной связи обнадеживающим является то, что на накопительных кольцах протонного синхротрона Европейского центра по ядерным исследованиям (ЦЕРН) и на ускорителе «Батавия» асимптотическая область уже достигнута или по крайней мере к ней уже приблизились. Для начальной фазы столкновений в этой области первичные частицы можно представлять себе просто как облака непрерывной материи, плотность которой на поверхности уменьшается по экспоненте. Такая модель объясняет логарифмическое возрастание полного сечения в зависимости от приращения энергии. Следовало бы только указать на характерное различие, существующее между [мысленными] экспериментами со звездами предельно высокой плотности и экспериментами с дисками, получающимися при столкновении высокоэнергетических частиц. В первом случае гравитация играет важную роль, во втором она несущественна. Так что эти два вида экспериментов могут дать нам два разных типа важной информации.
Возвращаясь в заключение к общим вопросам, упомянутым мною в начале моего доклада, я должен, по-видимому, сказать, что особая роль космического излучения внутри физики как целого покоится на двух обстоятельствах. Космическое излучение предоставляет информацию о поведении материи в наименьших масштабах; и оно же расширяет наше знание о строении Вселенной, о мире в широчайших масштабах. Оба эти крайних полюса недоступны прямому наблюдению, их можно изучать лишь посредством косвенных дедукций, по необходимости заменяя наши повседневные понятия другими, чрезвычайно абстрактными новыми понятиями; и лишь затем мы начинаем понимать, что могут означать в применении к природе такие выражения, как «последняя граница» или «бесконечность». В этом смысле исследование космических лучей — несмотря на все изменения в стиле экспериментов — все еще может быть названо очень романтической, очень вдохновляющей наукой.
Что такое элементарная частица?[64]
Ответ на вопрос «Что такое элементарная частица?» должны дать, естественно, прежде всего эксперименты. Я поэтому первым делом кратко подытожу важнейшие итоги физики элементарных частиц за последние полвека и попытаюсь доказать, что если мы непредвзято рассмотрим данные экспериментов, то ответ на вышеназванный вопрос будет в основном уже получен и теоретику останется не так уж много прибавить от себя. Во второй части своего доклада я затрону также и философские проблемы, связанные с понятием элементарных частиц. Дело в том, что, по-моему, известные тупики теории элементарных частиц — заставляющие тратить много усилий на бесполезные поиски — обусловлены подчеркнутым нежеланием многих исследователей вдаваться в философию, тогда как в действительности эти люди бессознательно исходят из дурной философии и под влиянием ее предрассудков запутываются в неразумной постановке вопроса. Несколько утрируя, можно, пожалуй, сказать, что дурная философия исподволь губит хорошую физику. В заключение я поговорю об этих спорных попытках, сравню их с аналогичными блужданиями в развитии квантовой механики, известной мне по личному опыту, и предложу некоторые свои соображения о том, как можно избегать подобных тупиков. Так что конец доклада снова окажется более оптимистичным.