Выбрать главу

Именно с равниной Жары удивительным образом связано движение Меркурия. В перигелии Солнце стоит над нею почти в зените, нагревая поверхность до очень высокой температуры. Но при следующем прохождении перигелия равнина Жары находится уже на ночной стороне, а к Солнцу обращен диаметрально противоположный район планеты. Некоторый избыток массы («маскон»), если именно он контролирует приливное резонансное движение, может находиться как раз под равниной Жары.

Как это ни парадоксально, происхождение рельефа противоположной стороны планеты возможно также связано с образованием равнины Жары. Предполагается, что мощные сейсмические волны, которые возникли в момент столкновения, прошли сквозь всю планету и сфокусировались в ее диаметрально противоположной точке. В результате этого сейсмического удара возникли трещины, поверхность раскололась и вздыбилась хаотическим нагромождением многокилометровых блоков на высоту 1-2 км.

Реголит Меркурия

Реголит Меркурия, о составе которого говорилось выше, подвергается непрерывной термоциклической обработке. Мощность солнечного излучения, падающего на 1м2 поверхности Меркурия, расположенный перпендикулярно солнечным лучам, составляет в среднем 9,15кВт., возрастая в перигелии до 11кВт. (земная поверхность за пределом атмосферы получает от Солнца 1,38кВт/м2). К тому же поверхность Меркурия темная, и только 12—18% падающего света отражается в пространство, а остальное поглощается. Это приводит к тому, что в подсолнечной точке, где Солнце в зените, из падающей на 1м2 мощности до 8кВт. идет на нагрев поверхности. Температура поверхности за длинный меркурианский день поднимается очень высоко и достигает 620 К (+347°С). В перигелии температура поднимается еще выше, до 690 К (в районе равнины Жары и ее антиподе). В афелии температура подсолнечной точки около 560 К.

Глинистые породы, встречающиеся на Земле, при такой температуре необратимо теряют воду — обжигаются. Однако до очень высокой температуры разогревается только поверхностный слой Меркурия, а он сильно измельчен и поэтому имеет низкую теплопроводность, т.е. служит прекрасным теплоизолятором. Тепловое радиоизлучение показывает, что уже на глубине нескольких десятков сантиметров температура постоянная, 345—365 К (около +80°С). С другой стороны, низкая теплопроводность приводит к тому, что после захода Солнца поверхность реголита быстро остывает: уже через 2 ч. температура уменьшается до 130 К, а ночью падает до 90 К (—183°С).

Суточное изменение температуры поверхности планеты отражает физические свойства слагающих ее пород. Если днем на фоне нагретой поверхности обнаружен участок более холодный, но обладающий, как показывает фотометрия, такими же отражательными свойствами, а поверхность при этом сухая, как у Меркурия и Луны, то это означает, что происходит отток тепла в глубину. Про такой участок говорят, что он обладает повышенной тепловой инерцией, которая определяется плотностью материала и его коэффициентами теплоемкости и теплопроводности. Например, днем более холодным будет скальный массив, окруженный тем же материалом, но в сильно раздробленном состоянии. Ночью же, наоборот, раздробленный материал быстро остынет, излучив свой небольшой запас тепла, скала же будет ярко светиться в инфракрасных лучах. Такие участки тоже были обнаружены на Меркурии. Их немного, что говорит об однородности поверхности планеты. Интересно отметить, что одна из подобных деталей на ночной стороне планеты совпадает с компактной областью повышенного радиоотражения.

После всего, что сказано выше о высоких дневных температурах на Меркурии, кажется невероятным сообщение о гигантских отложениях льдов в его полярных районах. Такое открытие было сделано с помощью наземной радиолокации в начале 1990-х гг. В районах северного и южного полюсов обнаружены многочисленные пятна размером от 50 до 150 км. с присущими льду радиоотражательными свойствами. По-видимому, лед покрыт тонким слоем теплоизолирующего реголита, но главное, благодаря чему сохранились льды, — это положение полярной оси планеты, строго перпендикулярной плоскости орбиты. Из-за этого Солнце никогда не заглядывает внутрь полярных кратеров, расположенных выше 82—84° широты. Расчетная температура там постоянно держится около 60—62 К. В таких условиях испарение крупного массива льда может происходить очень медленно, за миллиарды лет.