Выбрать главу

Аналогично действует включение в молекулу красителя ауксохромных групп (—NH2; —ОН), увеличивающих заряд и поляризацию молекулы.

Процесс поглощения энергии молекулами красителя очень важен для живых организмов, в теле которых большую роль играют красящие вещества — пигменты. Важен он и для практической деятельности человека, будь то крашение тканей, применение красителей в качестве лекарственных препаратов или добавок к пищевым продуктам.

Молекула, поглотившая фотон света, не может долго оставаться в возбужденном состоянии. В течение стомиллионных долей секунды она отдает свою избыточную энергию, а возбужденный электрон скачком возвращается на место. Отдача электронной энергии возбуждения происходит несколькими путями.

Первый путь носит название резонансного излучения. Знакомство с ним помогает глубже понять механизм возникновения цветов. Поставим рядом на стол два камертона, настроенных на одинаковую частоту, на одну и ту же ноту. Если один из камертонов заставить звучать о помощью смычка или молоточка, а затем остановить пальцем, то станет слышно звучание второго камертона, хотя мы к нему не прикасались. Но если изменить частоту колебаний второго камертона, прилепив к нему кусочек пластилина, резонанса не будет.

Нечто аналогичное происходит в радиоприемнике. Из огромной массы разнообразных радиоволн он улавливает и поглощает только одну. Если каждая радиостанция излучает в эфир волны своей частоты — своего «цвета», то радиоприемник, подобно красителю, поглощает один из этих цветов. Вращением тумблера мы плавно изменяем частоту электрических колебаний в его конденсаторах и катушках до тех пор, пока она не совпадет с частотой волн передающей станции. Следовательно, в этом случае можно изменять «краску» до поглощения нужного нам «цвета». Радиоприемник поглощает радиоволны, а краситель — более короткие световые волны.

Но камертон не только поглощает волны определенной частоты, но и излучает их вновь — резонирует. То же происходит и с красителем. Его молекулы, подобно крошечным камертонам, поглощая световые колебания определенной частоты, начинают резонировать, т. е. излучать свет той же частоты. Но каждый такой крохотный резонатор посылает волны света во всех направлениях. В прежнем же направлении, по которому распространялся свет от источника, колебания резонансной частоты будут распространяться во много раз слабее, чем без встречи с резонатором-красителем. Это явление мы и воспринимаем как поглощение света определенных частот — как появление окраски.

Циклические молекулы, в которых правильно чередуются одинарные и двойные связи между атомами углерода, и являются идеальными резонаторами, легко поглощающими и излучающими лучи видимой части спектра. Они-то и придают окраску окружающему нас земному миру, его живым обитателям и неживым предметам.

Нарисованная нами картина — это идеальный случай, который, как и все идеалы, воплощается в жизнь обычно не полностью ввиду вмешательства побочных факторов. Важнейший из этих факторов в данном случае — потеря части световой энергии при ее поглощении молекулами, при возбуждении пи-электронов и последующей отдаче поглощенной энергии излучением. Один из важнейших законов физики — второе начало термодинамики — утверждает, что при всякого рода энергетических переходах какая-то часть энергии переходит в тепловую, т. е, в энергию беспорядочного колебания и вращения молекул.

Это второй путь превращения энергии электронного возбуждения, вызванного поглощением кванта лучистой энергии. Обычно в тепловую энергию превращается лишь часть поглощенной энергии света. Мощный поток видимых лучей вызывает значительный нагрев кожи человека, повышение температуры кожи и как реакцию на это прилив крови к коже, покраснение ее и усиление потоотделения. Однако действие такого лучистого тепла на организм непродолжительно и поверхностно.

Избыточная энергия может быть отдана атомом или молекулой в том же виде, в каком она была поглощена,— в виде кванта излучения. Этот третий путь отличается от идеального — резонансного тем, что за короткое время существования возбужденного состояния часть энергии электрона успевает превратиться в тепловую, и величина излучаемого кванта меньше поглощенного, а свет флуоресценции (вторичного излучения) более длинноволновый, чем поглощенный.

Таково правило Стокса, применимое ко всем красителям. Спектр испускания красителей всегда несколько сдвинут в длинноволновую сторону по сравнению со спектром поглощения.

Спектр поглощения любого красителя имеет максимум, соответствующий определенной длине волны света. В обе стороны от максимума поглощение уменьшается. Интересно, что спектр флуоресценции — вторичного излучения красителя — также представляет собой кривую — зеркальное отражение кривой поглощения (рис. 14). Это правило зеркальной симметрии было опытным путем установлено советским физиком-оптиком В. Л. Левшиным. Третье правило флуоресценции состоит в том, что монохроматический свет любой длины волны (в пределах спектра поглощения данного красителя) вызывает вторичное свечение во всей полосе флуоресценции, причем распределение интенсивностей в полосе свечения точно такое же, как в том случае, когда краситель облучается белым светом.