Часто в качестве модификаторов трения применяют коллоидные дисперсии нерастворимых в масле соединений (дисульфида молибдена, графита). Однако перспективы применения – за маслорастворимыми соединениями, прежде всего ввиду того, что они образуют более устойчивые растворы и не выпадают в осадок.
Вязкостные свойства — это в общем случае такие свойства, которые характеризуют вязкость смазочных масел в заданных условиях применения, а также зависимость вязкости от температуры, давления и приложенного напряжения сдвига.
С уменьшением вязкости масла, при прочих равных условиях, с одной стороны, облегчается работа машины или механизма при низких температурах, снижаются потери мощности на трение и сокращается расход топлива; с другой стороны, снижение вязкости способствует износу трущихся пар и повышает вероятность вытекания масла через уплотнительные материалы, что может привести к «масляному голоданию» узла трения и выходу его из строя.
Вязкость масел заметно меняется с температурой. Изменение вязкости масла с температурой характеризует его вязкостно-температурные свойства.
С понижением температуры вязкость существенно возрастает, что затрудняет пуск или начало движения машины или механизма. При определенной температуре масло вообще может потерять подвижность. Эта температура носит название температуры застывания масла.
При выборе масла, как правило, стремятся к тому, чтобы изменение его вязкости в заданном диапазоне температур было минимальным, а вязкостно-температурная характеристика изменялась как можно меньше (иначе говоря, была пологой). Это облегчает эксплуатацию техники при низких температурах и одновременно обеспечивает надежную смазку узла трения при высоких (рабочих) температурах.
Вязкостно-температурные свойства масел, или «пологость» вязкостно-температурной кривой, обычно характеризуют при помощи безразмерной величины – индекса вязкости. Чем больше величина индекса вязкости, тем ровнее вязкостно-температурная характеристика, тем лучше ведет себя масло при изменениях температуры.
Минеральные масла, полученные по обычной технологии, имеют индекс вязкости порядка 70–80. Использование в технологических процессах возможностей гидрокрекинга позволяет достичь индекса вязкости более 100. Загущение маловязких минеральных основ полимерными присадками позволяет довести индекс вязкости до 110 и более. Дальнейшее повышение индекса вязкости минеральных масел достигается их смешением с синтетическими веществами, в частности с эфирами.
Динамическую вязкость определяют в ротационных вискозиметрах, а кинематическую – в капиллярных.
Противокоррозионные и защитные свойства смазочных масел – это очень важные эксплуатационные характеристики. Под противокоррозионными свойствами понимают способность масла в процессе работы не оказывать коррозионного воздействия на различные детали, выполненные из металлов, преимущественно из цветных металлов и сплавов.
Высокая коррозионная агрессивность масла может проявляться вследствие накопления в процессе его окисления большого количества продуктов кислотного характера, а также в результате высокой химической активности самого масла, обусловленной наличием в нем функциональных (преимущественно противоизносных) присадок. Здесь имеет место так называемая химическая коррозия. Снижение коррозионной активности смазочной среды достигается за счет повышения антиокислительных свойств масла, уменьшением содержания в нем противоизносных присадок и добавления к маслу специальных противокоррозионных добавок.
По характеру взаимодействия с металлом противокоррозионные присадки условно подразделяют на деактиваторы и пассиваторы.
Деактиваторы за счет образования комплексов предотвращают или уменьшают каталитическое действие маслорастворимых соединений металлов, накапливающихся в объеме масла в результате химического растворения.
Пассиваторы образуют на поверхности металла пленку, не растворяющуюся в масле. Эта пленка блокирует поверхность металла от коррозионного воздействия атмосферной среды.
Защитные пленки на поверхности металла формируются либо в результате химических реакций с металлом, либо вследствие адсорбционно-хемосорбционного взаимодействия присадки с поверхностью. Это по характеру действия сближает противокоррозионные и противоизносные присадки. Например, серосодержащие противокоррозионные присадки, как и близкие им по химическому составу противоизносные присадки, образуют с металлом такие продукты реакции, как сульфиды, меркаптаны и др. Аналогия в действии, очевидно, объясняет тот факт, что некоторые противоизносные присадки могут выполнять функцию и противокоррозионных добавок.