Как видим, содержание кислорода в дыхательном мешке находится на пределе, так как уже при парциальном давлении кислорода 0,16 кгс/см2 возможно кислородное голодание. При резком увеличении потребления кислорода водолазом может наступить кислородное голодание.
Пример 10.19. Определить содержание кислорода в дыхательном мешке аппарата, имеющего непрерывную подачу 50% азотнокислородной смеси в количестве 8 л/мин, если водолаз находится на поверхности под абсолютным давлением 1 кгс/см2 и потребляет от 0,85 до 2,5 л/мин кислорода при коэффициенте регенерации КR = 0.
Решение. Парциальное давление кислорода в дыхательном мешке при m =0,85 л/мин по (10.23)
При т = 2,5 л/мин
Таким образом, даже при весьма большом потреблении кислорода его парциальное давление в дыхательном мешке данного аппарата находится в допустимых пределах, что достигнуто за счет высокого расхода газовой смеси.
Время пребывания водолаза под водой при дыхании искусственной газовой смесью, как правило, ограничивается допустимым временем дыхания газовой смесью с повышенным парциальным давлением кислорода. Это время зависит от физической нагрузки, температуры окружающей среды, содержания С02 в дыхательной смеси и других факторов. Приближенно допустимое время дыхания водолаза газовой смесью в зависимости от парциального давления кислорода и физической нагрузки в часах формула (10.24):
где n – коэффициент физической нагрузки водолаза;
рК – парциальное давление кислорода в скафандре (дыхательном мешке), кгс/см2.
Коэффициент физической нагрузки водолаза
где т-объемный расход потребления кислорода водолазом, л/мин.
Для определения парциального давления кислорода по заданным значениям времени тк и нагрузки n может быть использована формула
Грубые прикидочные расчеты допустимого времени дыхания искусственной газовой смесью в зависимости от нагрузки или потребления кислорода могут быть выполнены по графикам рис. 10.8.
Пример 10.20. Определить допустимое время пребывания водолаза под повышенным парциальным давлением кислорода, используя данные примеров 10.16 и 10.17.
Решение. Коэффициент физической нагрузки по (10.25)
Допустимое время пребывания в аппарате с регенеративной коробкой, заряженной веществом с KR = 1,3 (рк = 2,82), по (10.24)
Допустимое время пребывания в аппарате с регенеративной коробкой, заряженной ХПИ рк = 2,14):
Из этого примера видно, что даже незначительное изменение парциального давления кислорода в дыхательной смеси значительно изменяет величину допустимого времени пребывания водолаза на глубине.
10.6. Расход и запасы газовых смесей
Выбирая режим спуска, следует убедиться, что запасы воздуха (газовых смесей) или производительность системы являются достаточными как для обеспечения работ на глубине, так и для подъема водолаза по режиму декомпрессии.
Минимальный расход газовой смеси одним водолазом в снаряжении с системой газоснабжения с поверхности определяется минимальным объемом свободной газовой смеси, необходимой на один водолазный спуск, и складывается из следующих статей расхода.
Рис. 10.8. Графики для определения допустимого времени дыхания искусственной газовой смесью в зависимости от парциального давления кислорода и нагрузки: а – очень тяжелая работа n=0,3; б – тяжелая работа n =0,5; в – средняя работа и холодная вода n=0,75; г – средняя работа n=1; д – легкая работа n=2; е – сидение в рекомпрессионной камере n =3; ж – покой n=5
Расход смеси на заполнение газового объема скафандра в м2
Q CK = pV CK = (1 +0,1H)У CK . (10.27)
где р – абсолютное давление на глубине погружения, кгс/см2;
VCK – газовый объем скафандра, м3; Н-глубина погружения, м. Расход смеси за время погружения водолаза на глубину в м3:
где р0 – внешнее абсолютное давление на поверхности, кгс/см2;
q – расход сжатой газовой смеси (воздуха) на глубине погружения, м3/мин;
ТП = H/vП – время погружения водолаза на глубину, мин;
vП – 6/10 м/мин – допустимая скорость погружения водолаза.
Расход смеси за время пребывания (работы) водолаза на глубине (грунте) в м3
Q T = pqT r = Q+0.lH)qT r . (10.29)
где Тr – время пребывания (работы) водолаза на глубине (грунте), мин.