Существует большая разница между полем волны, описывающей частицу, и электромагнитным полем, описывающим радиацию. Так, электромагнитное поле — это нечто измеримое в принципе, а во многих случаях — измеримое и на практике с большой степенью точности. В случае радиоволны, приходящей от передатчика, можно не только спрашивать, о том, какова интенсивность волны, какова её частота и поляризация, но можно также утверждать, и проверить это экспериментально, что в определённой точке в некоторый определённый момент направление электрического вектора вполне определённо, а поле имеет определённую интенсивность. Этого нельзя сделать с волновым полем, изображающим электрон, по причинам, о которых я буду говорить ниже. Таким образом, появляются новые величины, которые можно назвать полями и которые возникают с развитием квантовой механики; они важны, так как для того чтобы делать некоторые предсказания о поведении электрона или какой-нибудь другой частицы, нам нужно изучать их свойства. Так, например, квадрат волновой функции говорит нам о вероятности нахождения частицы в определённой точке пространства, если мы будем искать её там. Но я хочу подчеркнуть, что такие волновые поля не во всех отношениях подобны электромагнитному полю. Худшее ждёт нас впереди, так как те изменения, которые должны быть сделаны в физической теории при применении её к малым объектам или малым размерам, влияют также на само электромагнитное поле. Следует рассматривать величины электромагнитного поля как физические переменные, подчиняющиеся законам квантовой теории так же, как и любая другая физическая переменная. На самом деле, квантовая теория с самого начала, от гипотезы Планка о том, что энергия представляет собой пучок излучения, основана на том, что световые кванты являются неделимыми и что каждое количество энергии связано с частотой излучения, и это показывает, что простая картина непрерывного изменения интенсивности поля, как это выражается в максвелловых уравнениях, не полна. Она должна быть заменена квантовой теорией электромагнитного поля.
В своей простейшей форме квантовая электродинамика, которая по существу применяет к электромагнетизму основную гипотезу Планка, в количественной форме применяя формализм квантовой механики, была написана в конце 20-х и начале 30-х годов. Я думаю, что первым, кто рассматривал вещи таким образом, был Дирак39, но он избежал некоторых осложнений, ставших очевидными позже. Первой попыткой изложения полной квантовой теории электромагнитного поля была статья Гейзенберга и Паули39a. Эта работа выяснила многие вопросы, которые возникли тогда, но она внесла также определённые трудности, и хотя эти трудности значительно глубже понимаются в настоящее время, я не уверен, что мы можем претендовать на то, что мы их полностью преодолели.
Важной особенностью теории того типа, который был разработан Гейзенбергом и Паули, является то, что принцип неопределённости квантовой механики применяется к электромагнитным полям так же, как он применяется и в других случаях. Это означает, что как произведение δpδx неопределённостей в определении момента частицы и её координат положения должно превосходить некоторую величину порядка постоянной Планка h, так же и здесь существует предел точности, с которой можно измерять электромагнитное поле. Однако мы здесь должны быть несколько более точными, так как получается, что если мы намереваемся измерить электромагнитное поле в математически определённой точке пространства, то произведение δEδH неопределённостей электрического и магнитного полей становится бесконечно большим. Нельзя измерить их с какой-либо точностью! Безусловно, ни один разумный экспериментатор не станет пытаться измерять непрерывную величину в точке. Лучшее, на что можно надеяться,— это измерить среднее по малой области, а затем, делая все большие и большие приближения, уменьшать размеры этой области. Если поступать так (опуская ради простоты подробности того, как определять среднее или форму области), то для области с линейными размерами L соотношение неопределённости для электромагнитного поля, оказывается, принимает вид