δEδH
>
ch
L4
.
(9)
Следовательно, мы обнаруживаем, что по мере того, как эта область становится все меньше и меньше, ошибки при совместном рассматривании E и H становятся все больше и больше, подразумевая, что должны наблюдаться существенные флуктуации поля.
Это и не удивительно, потому что квантовая теория рассматривает каждый возможный тип колебаний электромагнитного поля, как осциллятор, а мы знаем, что квантово-механический осциллятор обладает нулевой энергией даже когда он находится в самом низшем состоянии. В нашем случае это означает, что если даже световые кванты или «фотоны» отсутствуют, все же остаются колебания поля. Далее, это применимо к каждому типу колебаний всякой возможной длины волны и всякого направления. Если теперь усреднить по определённой области, то типы колебаний очень коротких волн тоже усредняются; но чем меньше область, по которой проводится усреднение, тем большее число типов вносят свою долю, и поэтому ошибки увеличиваются. Таким образом, электромагнитное поле приобретает большую реальность. Хотя такое явление мы не можем объяснить механически, но оно имеет большую реальность, чем можно вообразить с классической точки зрения, и чем точнее мы будем стараться рассматривать явление, тем большие флуктуации будем в нём открывать.
Но принцип неопределённости (9) для электромагнитного поля относится, как и в механике частицы, к произведению двух величин, т. е. чем более точно измеряется электрическое поле, тем менее точно мы можем знать магнитное поле, и наоборот. Однако, согласно формализму квантовой механики, каждое поле в отдельности может быть измерено сколь угодно точно. Это сложный вопрос и такой, относительно которого сначала были некоторые разногласия. Ландау и я попытались доказать, что39b, хотя это и результат принципа неопределённости, но фактически невозможно на практике при помощи какого бы то ни было прибора измерить одно из полей само по себе сверх определённого предела точности. Испускаемое излучение интерферирует с полем пробных тел, которые должны применяться для наблюдения первоначальных полей.
Нильс Бор не согласился с такой точкой зрения и в ряде статей, написанных совместно с Розенфельдом40, доказал, что наши заявления неправильны. Они доказали, что в принципе можно изобрести такие приборы, которые будут измерять одну компоненту поля, усреднённую по конечному объёму или конечному времени (что из них выбрать — несущественно) с любой степенью точности. Тем не менее любопытно отметить, что, когда мы рассматриваем детали тех ограничений, которые необходимо наложить на измерительный прибор, то результирующие операции выглядят совершенно непохожими на какие-либо измерения, которые экспериментатор стал бы проектировать. Одна из трудностей состоит в том, что для того, чтобы удерживать на низком уровне испускание излучения, которое, конечно, будет стремиться исказить измеряемое поле, пробные тела должны быть сделаны весьма тяжёлыми. Это означает, что их движение и ускорение в поле будет только весьма малым, и поэтому смещение их должно быть измерено весьма точно. Кроме того, эти пробные тела должны полностью заполнять пространство в измеряемом поле, хотя они сами не должны создавать поля или, по крайней мере, заметного поля, потому что можно устроить так, чтобы было два таких испытательных тела и чтобы они перекрывались и заполняли то же самое пространство в то же самое время. Например, можно представить себе эти тела как налагающиеся решётки, несущие противоположные заряды, так что только небольшое относительное движение в противоположных направлениях в результате действия измеряемого поля приведёт к разделению зарядов. Это вызовет только малое поле, которое можно удержать в пределах границ.
Таким образом, если мы хотим быть точными в измерении поля, то мы должны измерять его своеобразными способами. Имеем ли мы право заявлять, что мы измеряем поле, которое имелось бы в отсутствии этих пробных телец, довольно трудно судить. Нормально, когда мы измеряем что-нибудь, мы оставляем систему в неприкосновенности и быстро приносим измерительный прибор. Здесь мы не можем этого сделать, потому что поля электромагнитного излучения не остаются неизменными очень долго. Они распространяются со скоростью света, и поэтому, так как измеряющая аппаратура не может за ними угнаться она должна сохранить своё положение.