Аргументы Бора и Розенфельда основаны на фундаментальных законах квантовой теории электромагнитного поля вне зависимости от того, какого сорта малыми испытательными телами или частицами физик располагает на самом деле. Самые тяжёлые отдельные частицы, которые мы знаем в природе, имеют конечную массу, поэтому мы не можем получить систему испытательных тел, которая была бы сколь угодно тяжёлой, как это необходимо для таких воображаемых экспериментов. Разумеется, мы можем построить большой предмет из атомов так, что он будет сколь угодно тяжёлым, но он будет также протяжённым в пространстве и иметь внутренние степени свободы. Тогда различные атомы смогут совершать колебания относительно друг друга и создавать нарушающие радиационные эффекты, вызывающие дальнейшие осложнения.
На самом деле, мы можем идти очень далеко при измерении электрических полей, применяя электроны, потому, что электроны, как оказывается, не сильно подвержены действию всяких других агентов. Ещё лучшей частицей является μ-мезон, который в двести раз тяжелее электрона, и поэтому является лучшей пробной частицей. Насколько мы знаем, μ-мезон также не подвержен заметному действию чего либо другого, кроме электрических сил. Правда, он сам по себе живёт только две микросекунды, но это достаточно долго для подобных экспериментов!
Если нам нужно что-нибудь потяжелее, то мы должны обратиться к таким частицам, как протоны, которые очень сильно подвержены иным типам взаимодействий, например взаимодействию с другими нуклонами. Конечно, если протон достаточно сильно возмущён, то он может испускать мезоны и всякого рода другие новые частицы, известные теперь в физике. Следовательно, я думаю, что для такого рода измерений, которые мы обсуждаем, протоны были бы совершенно бесполезными. Очевидно, на практике существуют пределы, до которых можно распространить понятие поля, даже усреднённого по малой области. Это не противоречит работе Бора и Розенфельда, которые утверждают вполне определённо, что они просто исследуют то, что возможно в рамках квантовой электродинамики, не ограничиваясь возможностью существования (или чего-либо другого) различных частиц и других объектов.
На менее теоретическом уровне мы можем теперь отметить другой пункт по поводу сравнения, которое я раньше сделал между электромагнитным полем и волновым полем материи. Эта аналогия была исключительно полезна при разработке квантовой механики. Но она имеет свои ограничения, и она не так полна, как это часто принимают. Для электромагнитного поля существует классический предел, внутри которого все измеримо и нет нужды беспокоиться относительно принципа неопределённости, как, например, это имеет место в случае радиоволн. Для того чтобы увидеть, какую форму этот предел принимает, мы можем написать амплитуду какой-нибудь волны — или волновой функции ψ, или электрического вектора E скажем, в виде
E=a cos(kx-ωt-γ).
(10)
Затем, рассматривая такую волну, мы можем спросить, насколько точно мы может надеяться измерить фазу γ т.е. измерить, где находятся узлы и гребни волн в данный момент? Мы получаем такой результат, что если N — число фотонов, переносимых волной, пропорциональное a², то неопределённости δN и δγ в N и γ связаны соотношением
δNδγ ≥ 2π.
(11)
Значит, если мы вообще интересуемся фазой, мы должны знать её с точностью большей, чем 2π. Другими словами, мы должны иметь δγ ≪ 2π, так что SN ≫ 1. Это означает, что когда мы можем приписать волне классическое значение, мы должны иметь в значительной степени неопределённость относительно числа частиц, содержащихся в волне. Для света это всегда правильно, так как в основных процессах, при помощи которых свет взаимодействует с материей или с измеряющим прибором, фотоны всегда испускаются или поглощаются по одному. Поэтому если в окрестности имеется измеряющий прибор, число фотонов должно по необходимости быть неопределённым. Однако в случае электронов дело обстоит не так, потому что электроны несут заряд. Если бы присутствовали только электроны, то их число всегда было бы известно из полного заряда, который сохраняется. Мы можем создавать пару положительного и отрицательного электронов вместе, но тогда то, что мы измеряем, будет не фазой или волновой функцией одного из них, а фазой произведения двух волновых функций электрона и позитрона, а это — нечто совсем иное.