Следовательно, если частицы не могут быть поглощены или произведены сами по себе, у нас нет никакой надежды когда-либо приписать единственное значение фазе. С другой стороны, для того чтобы получить классическую ситуацию, нам нужно, чтобы неопределённость в фазе γ была мала сравнительно с 2π и в то же время, чтобы неопределённость в числе N была малой сравнительно со значением самого этого числа N. Другими словами, нам нужно удовлетворить обоим условиям
δγ ≪ 2π,
δN/N ≪ 1.
(2)
Из этих условий ясно следует, что N должно быть велико по сравнению с единицей, так что должно быть в наличии множество частиц или фотонов. Точнее, соответствующее число фотонов — это не все фотоны лаборатории, а только те, которые находятся во вполне определённом типе движения, например в специфической радиоволне, испускаемой передатчиком. В случае радиоволн затруднений не встречается; число фотонов всегда очень велико, поскольку энергия каждого из них на радиочастотах исключительно низка. С электронами, однако, этому условию нельзя удовлетворить, потому что электроны подчиняются принципу исключения, который требует, чтобы в каждом из возможных типов движения находилась только одна частица. Следовательно, нельзя иметь произвольно большое число частиц, переносимых волной материи, и нельзя получить классического описания таких волн.
Конечно, не следует считать простой случайностью то, что мы рассматриваем электромагнитное поле и фотоны, как волны, в то время, как электроны и другие тела мы считаем частицами. Существует область, в которой электромагнитное поле имеет идеально точное классическое значение и может быть представлено классическими уравнениями, символы которых соответствуют вполне определённым числам, которые могут быть записаны. Этого нельзя сделать с полем материи. Нельзя также получить описание в виде частиц для фотонов в области, где было бы справедливо классическое описание, так как там существует трудность в локализации фотонов. В то время, как можно спрашивать, где находится частица (фактически волновая функция и была придумана для того, чтобы позволить нам предсказывать возможные результаты экспериментов, запроектированных для локализации частицы), нельзя спрашивать, где находится фотон, кроме как в рамках геометрической оптики. Если ограничить все электромагнитное поле малой областью, то можно предположить, что правильно считать, что фотоны находятся где-то там, но нельзя более точно локализовать их, как это можно сделать в эксперименте с электронами. Это является следствием того факта, что фотоны имеют нулевую массу покоя и распространяются со скоростью света.
Такого же рода трудности возникают, когда электроны или другие частицы отыскиваются в релятивистской области. Если проектируется эксперимент, имеющий целью попытку локализовать их более точно, то принцип неопределённости требует такого мощного действия сил на них, что не только их момент изменяется на величину, указываемую принципом неопределённости, но кроме того, создаются пары новых частиц, и к тому времени, когда эксперимент заканчивается, уже не ясно, что мы искали.
Эти осложнения с понятием поля, которые являются следствиями квантовой теории, уже достаточно плохо выглядят, но вдобавок к ним мы узнали, что существует много предсказаний, которые мы хотели бы сделать относительно электромагнитного поля, но которые приводят к бесконечным ответам. Одно из них я уже упоминал. Поскольку существует нулевое колебание для каждого типа колебаний электромагнитного поля, и поскольку существует бесконечное число таких типов (так как нет нижнего предела для возможной длины волны и, следовательно, нет верхнего предела для момента протона), средняя энергия этого флуктуирующего поля, вычисленная обычным путём, оказывается бесконечно большой. Это тесно связано с растущей интенсивностью флуктуаций по мере того, как рассматриваются все меньшие и меньшие области. Поэтому нам следует объяснить, о чем мы говорим, когда утверждаем, что то, что мы действительно наблюдаем как энергию, есть только энергия поля минус энергия, которая существовала бы там нормально в вакууме. Таким способом мы выключаем себя из бесконечной энергии вакуума. Пожалуй, это можно было бы сделать несколько более приемлемым благодаря тому факту, что в вакууме существуют бесконечности, одни из которых являются положительными, а другие отрицательными. При достаточном благоразумии можно убедить себя, что эти бесконечности могут взаимно уничтожаться или, по крайней мере, в том, что ответ двусмыслен и необходимо принять разумную точку зрения, состоящую в таком описании, при котором вакууму не приписывают никакой энергии.