Выбрать главу

Приведённая выше формула подразумевает также, что вязкость должна быть пропорциональна квадратному корню из абсолютной температуры, если считать молекулы упругими шариками. Однако эксперименты, по-видимому, доказывали, что вязкость просто пропорциональна температуре [16]. Тогда Максвелл разработал значительно более общую и детальную теорию переноса свойств в газах, основанную на допущении, что молекулы отталкиваются с силой, обратно пропорциональной n-й степени расстояния между их центрами [17]. Его метод состоял в определении среднего значения различных функций скоростей молекул, которые могут быть записаны в виде интегралов по динамическим переменным, описывающим соударение молекул. Затем он мог отождествить макроскопические свойства, например диффузию, теплопроводность, давление и вязкость с соответствующими средними значениями. В общем этот подход приводит к выражениям типа

∫∫∫

QV

(n-5)/(n-1)

ƒ(ξ,η,ς)𝑑ξ𝑑η𝑑ς,

где Q — некоторая функция компонентов скорости (ξ, η, ς), зависящая от рассматриваемого свойства, а V — относительная скорость двух соударяющихся молекул [18]. В частном случае (n = 5) V выпадает, и это выражение приводится к среднему значению Q тогда можно, например, доказать, что вязкость пропорциональна абсолютной температуре независимо от характера функции ƒ [19]. Так как Максвелл полагал, что это действительно имеет место, то в дальнейших своих вычислениях он и принял функцию силы пятой степени. (Молекулы с взаимодействием этого типа теперь называют «максвелловскими».) Позже было показано экспериментально, что зависимость вязкости от температуры более сложна, чем допускал Максвелл, и полное теоретическое объяснение потребовало определения функции распределения скоростей ƒ для неоднородного газа, где максвелловское распределение справедливо только приближённо. За дальнейшей историей этого вопроса мы отсылаем читателя к монографии Чепмена и Коулинга [20].

Проследив в основных чертах развитие теории до того момента, когда она была радикально пересмотрена Максвеллом и Больцманом, мы перейдём теперь к реакции других учёных на эту теорию. Хотя отождествление теплоты с молекулярным движением было достаточно широко принято после 1850 г., по вопросу о строении молекул и их взаимодействиях были значительные разногласия. Вихревая теория атома, разработанная Ранкиным [21] и Гельмгольцем [22], была весьма популярна в этот период. Томсон (лорд Кельвин) допускал, что математическое развитие свойств этих атомов может доказать, что гельмгольцевы кольца являются истинными атомами.

«Вероятно, изящные исследования Д. Бернулли, Герапата, Джоуля, Крёнига, Клаузиуса и Максвелла относительно различных термодинамических свойств газов могут содержать все те положительные допущения, которые они были вынуждены сделать относительно сил взаимодействия между двумя атомами и кинетической энергии, приобретаемой отдельными атомами или молекулами, которым удовлетворяют вихревые кольца, не требуя никаких дополнительных свойств от вещества, движения которого составляет их, кроме инерции и несжимаемости в занимаемом ими пространстве. Полное математическое исследование взаимодействия между двумя вихревыми кольцами данных величин и скоростей, проходящих одно через другое по любым двум линиям, направленным так, что они никогда не сближаются более, чем на большое кратное число диаметров каждого, есть вполне разрешимая математическая задача; а новизна привходящих обстоятельств представляет трудности возбуждающего характера. Решение этой задачи будет основой предположенной повой кинетической теории газа» [23].

Таким образом, точка зрения Томсона являлась не столько оппозиционной к кинетической теории, сколько желанием, чтобы эта теория была разработана с иной точки зрения. Максвелл также поддерживал вихревую теорию, потому что она казалась обнадёживающей в отношении вывода закона внутриатомных сил из основных принципов.