Следующим шагом был выбор профиля и формы крыла с минимальным сопротивлением при сверхзвуковой скорости полета. Величина полного аэродинамического сопротивления складывается из сопротивления трения (в принципе такого же, как и при дозвуковой скорости), волнового, индуктивного и интерференционного сопротивлений. Волновое сопротивление прямо пропорционально квадрату площади поперечного сечения и обратно пропорционально площади крыла, а сопротивление трения пропорционально площади крыла. Считается, что уменьшение волнового сопротивления должно происходить при уменьшении как площади крыла в плане, так и его поперечного сечения. Поскольку в крыле размещаются топливо, вооружение и шасси, то уменьшить сечение крыла можно было только в его концевых частях. Так получился излом передней кромки (с большим углом стреловидности в корневых частях крыла), который оказался подходящим как для сверхзвуковых скоростей полета, так и для скорости приземления. Дело в том, что треугольное крыло такого типа характеризуется меньшим поперечным сечением при оптимальной несущей поверхности, большим внутренним объемом и большим углом стреловидности прифюзеляжных частей, более близким положением центра тяжести крыла относительно центра давления, более благоприятным распределением площади поперечного сечения в продольном направлении и оптимальным выдвижением воздухозаборников к носу самолета.
Применение излома передней кромки крыла привело к тому, что при малой относительной толщине профиля получена большая строительная высота крыла, позволяющая разместить в нем воздушные каналы, а также топливные баки, шасси и часть оборудования.
Рис. 1.22. Характерные формы треугольного крыла сверхзвуковых самолетов (кроме ХВ-70А, масштаб 1 :200).
Уменьшение же угла стреловидности концевых частей крыла благоприятствовало безотрывному обтеканию при малых скоростях (больших углах атаки). С этой точки зрения аэродинамическая схема самолета «Дракен» оригинальна; она оказала влияние на выбор схем таких самолетов, как YF-12 (SR-71), Ту-144, «Конкорд» и даже F-16, YF-17 и F-18. Большой угол стреловидности передней кромки крыла в прифюзеляжной части обеспечивает малое сопротивление самолета в полете со сверхзвуковыми скоростями, а также незначительное изменение положения центра давления самолета при переходе через скорость звука, а следовательно, и стабильность его балансировки на различных режимах полета.
Применение треугольного крыла с увеличенным углом стреловидности в корневых частях и малой удельной нагрузкой позволило самолету «Дракен» приземляться со скоростью 215 км/ч, несмотря на отсутствие механизации.
Совершенно иная концепция использована в процессе проектирования самолета В-58. Считалось, что при высоких скоростях наилучшие характеристики обеспечивает треугольное крыло с прямолинейной передней кромкой, которое имеет большое критическое число Маха, а также малое волновое сопротивление. Проблема же ухудшения несущих свойств такого крыла при малых скоростях, особенно ограничение используемых углов атаки явлением срыва потока, разрешена другим путем.
Таблица 5. Геометрические параметры сверхзвуковых самолетовРис. 1.23. Шведский истребитель «Дракен» J35 в полете.
На основании проведенных исследований установлено, что хорошие результаты в этом отношении дает коническая крутка сечений крыла, т. е. постепенно увеличивающийся от корневого до концевого сечения отгиб передней кромки крыла книзу. Такая крутка затягивает срыв потока в концевых сечениях крыла до больших углов атаки и обеспечивает более благоприятное распределение подъемной силы вдоль размаха крыла, приближая его к идеальному (эллиптическому). Кроме того, направление вектора подъемной силы при этом приближается к вертикальному, благодаря чему уменьшается горизонтальная составляющая равнодействующей аэродинамической силы. Правда, при малых углах атаки сопротивление крыла с конической круткой несколько больше (вследствие локального отрыва потока на нижней поверхности). Прирост сопротивления оказывается незначительным, если крутка (как и закругление передней кромки) сочетается с большим углом стреловидности. Кроме того, благодаря увеличивающейся кривизне отогнутой передней части профиля концы крыла работают при меньших локальных углах атаки, чем корневые части. Вследствие этого отрыв потока на концах крыла возникает при большем угле атаки самолета, что существенно улучшает его летные качества (эффективность элеронов), а также распределение нагрузки на крыло вдоль размаха (аналогичный эффект получается при использовании аэродинамической или геометрической турбулизации).