Нагрев (или охлаждение) тела человека (или отдельных его частей) происходит за счёт следующих механизмов:
— лучистой теплопередачи,
— кондуктивной теплопередачи (теплопроводности),
— конвективной теплопередачи,
— испарения влаги с поверхности тела или конденсации паров воды на поверхность тела из воздуха.
Лучистая теплопередача и её особенности уже рассмотрены в предыдущем разделе (рис. 42). Выполним аналогичный анализ и для других процессов теплопередачи.
Кондуктивная теплопередача обусловлена движением молекул и может наблюдаться и в подвижном (даже навстречу газовому потоку), и в абсолютно неподвижном воздухе в случае наличия зон воздуха с различной температурой. В горячих зонах молекулы более энергичны (имеют большую скорость), чем в холодных зонах. Поэтому в процессе взаимной диффузии (миграции) молекулы из горячих зон приносят добавочное тепло, а молекулы, прибывшие в горячие зоны из холодных, приносят холод. Величина кондуктивного теплового потока равна qконд=λΔТ/σ, где λ — коэффициент теплопроводности среды, ΔТ — перепад температуры на слое среды толщиной σ. Величина ΔТ /σ называется градиентом температуры в среде. Величина αк=λ/σ называется коэффициентом кондуктивной передачи. Для оценочных расчётов можно принять αк =10 Вт/(м2 град) для любых поверхностей (для раздетого ли человека, нагретых или охлаждённых стен, батарей отопления и других условно плоских поверхностей в неподвижном воздухе). Так, например, человек, выделяющий внутри себя в состояний покоя 60 Вт тепла постоянно, сбрасывает это тепло излучением αл(Тк-Т), где αл=7 Вт/(м2 град) — коэффициент бытовой лучистой теплопередачи, и теплопроводностью воздуха αк(Тк-Т), где αк =10 Вт/(м2 град), вследствии чего раздетый человек с температурой кожи Тк =30 °C не мёрзнет в состоянии покоя при температуре воздуха и стен 26 °C. Действительно, в соответствии с исследованиями Кричагина (1966 г.) термический комфорт раздетого лежачего человека достигается при 25–27 °C. Но если человек находится на ярком солнце, например, в высокогорных Альпах, где уровень солнечного излучения достигает 1,05 кВт/м2 (причём за счёт отражения от снега излучение исходит со всех сторон), то раздетый человек с сухой кожей в окружении деревьев не мёрзнет в абсолютно полный штиль даже при температуре воздуха снега и деревьев на уровне минус 30 °C. Но малейшие дуновения воздуха изменяют всю картину, поскольку добавляется теплоотвод за счёт конвекции (движения) воздуха. При скорости ветра 3 м/сек человек с сухой кожей на солнце в условиях высокогорья мёрзнет уже при 0 °C. Если вокруг деревьев нет, то заметным становится и вклад потери излучения в ясное небо (космос). Ещё серьёзней будут последствия увлажнения кожи раздетого человека.
Рис. 44. Характерные уровни теплопередачи одетого человека с сухой кожей при различных температурах воздуха. 1 — тепловыделение человека (обычная теплоотдача), 2 — вклад теплоотдачи испарением, 3 — вклад теплоотдачи конвекцией, 4 — вклад теплоотдачи теплопроводностью, 5 — вклад теплоотдачи излучением.
Конвективная теплопередача наблюдается только при движении воздуха. Если в случае кондуктивной теплопередачи каждая энергичная молекула с трудом мигрирует среди других молекул воздуха из горячей зоны в холодную, то в случае конвективной теплопередачи все энергичные молекулы могут разом «сдуться» ветром в составе всей массы воздуха из горячей зоны в холодную. Конвективный теплопоток равен qкoнв(кBт/м2)= СрρV(Т1-Т2)=1,ЗV(Т1-Т2), где Ср и ρ — массовая теплоёмкость и плотность воздуха, V — скорость перемещения воздуха (ветра) в м/сек, Т1 и Т2 — температуры горячей и холодной зон в °С. Именно эта конвективная теплопередача имелась в виду в разделе 5.5 при рассмотрении аэродинамики бани. Так, металлическая печь нагревает вокруг себя воздух до температуры Т1, этот горячий воздух постоянно «сдувается» потоком ветра (конвективным потоком) и заменяется на холодный воздух с температурой Т2, который в свою очередь начинает нагреваться от стенки печи. При этом воздух, контактирующий с горячей поверхностью, вовсе не обязан успеть нагреться до температуры поверхности. Нагревается до температуры поверхности лишь тонкий пристеночный слой, причём скорость его скольжения вдоль поверхности может быть много меньшей, чем скорость всего набегающего газового потока.