В прошлом веке эту область геометрии называли аналитической динамикой, и Лагранж гордился, что изгнал из нее чертежи. Чтобы проникнуть в симплектическую геометрию, минуя длинный исторический путь, проще всего воспользоваться аксиоматическим методом, имеющим, как заметил Б. Рассел, много преимуществ, подобных преимуществам воровства перед честным трудом.
Сущность этого метода состоит в том, чтобы превращать теоремы в определения. Содержательная часть теоремы становится тогда мотивировкой определения, и алгебраисты ради повышения авторитета своей науки ее обычно опускают (понять немотивированное определение невозможно, но многие ли из пассажиров самолета знают, как и почему он изготовлен?).
Теорема Пифагора, бывшая в свое время высшим достижением математической культуры, низведена в современном аксиоматическом изложении евклидовой геометрии до малозаметного определения: евклидовой структурой в линейном пространстве называется линейная по каждому аргументу симметрическая функция пары векторов (скалярное произведение), для которой скалярный квадрат любого ненулевого вектора положителен.
Определение симплектической структуры в линейном пространстве аналогично: это линейная по каждому аргументу кососимметрическая функция пары векторов (кососкалярное произведение), которая невырождена (любой ненулевой вектор не всем векторам косоортогонален, т. е. его кососкалярное произведение с некоторыми векторами ненулевое).
Пример. Назовем кососкалярным произведением двух векторов на ориентированной плоскости ориентированную площадь параллелограмма, натянутого на эти векторы (т. е. определитель матрицы, составленной компонент векторов). Это произведение — симплектическая структура на плоскости.
В трехмерном пространстве (и вообще в нечетномерном пространстве) симплектических структур нет. Симплектическую структуру в четырехмерном (и вообще в четномерном) пространстве легко построить, представив пространство в виде суммы двухмерных плоскостей: кососкалярное произведение распадается в сумму площадей проекций на эти плоскости.
Все симплектические пространства фиксированной размерности изоморфны (как и все евклидовы). Мы будем называть кососкалярное произведение двух векторов "площадью" натянутого на них параллелограмма.
Каждое линейное пространство в евклидовом пространстве имеет ортогональное дополнение, его размерность равна коразмерности исходного подпространства.
В симплектическом пространстве определено косоортогоналыюе дополнение к линейному подпространству: оно состоит из всех векторов, кососкалярные произведения которых со всеми векторами подпространства равны нулю. Размерность косоортогонального дополнения также равна коразмерности исходного подпространства. Например, косоортогональное дополнение к прямой на плоскости — сама эта прямая.
Линейное подпространство, являющееся своим собственным косоортогональным дополнением, называется лагранжевым подпространством. Его размерность равна половине размерности исходного симплектического пространства.
Риманова структура на многообразии задается выбором евклидовой структуры в пространстве, касательном к многообразию в любой точке.
Точно так же симплектическая структура на многообразии задается выбором симплектической структуры в каждом его касательном пространстве; однако в отличие от риманова случая эти структуры не произвольны, а связаны между собой, как это объяснено ниже.
Риманова структура на многообразии позволяет измерять длины кривых на нем, суммируя длины малых векторов, составляющих кривую. Точно так же симплектическая структура позволяет измерять "площади" ориентированных двухмерных поверхностей, лежащих в симплектическом многообразии (суммируя "площади" составляющих поверхность малых параллелограммов). Дополнительное условие, связывающее симплектические структуры в разных касательных пространствах, таково: "площадь" всей границы любой трехмерной фигуры равна 0.
В линейном симплектическом пространстве можно ввести структуру симплектического многообразия, определив кососкалярное произведение приложенных в любой точке векторов как кососкалярное произведение векторов, полученных из них параллельным переносом в начало. Легко проверить, что условие согласования здесь выполнено.
Существует много неизоморфных друг другу римановых структур в окрестности точки плоскости или пространства большего числа измерений (для различения их Риман и ввел свою кривизну).