Прекрасные результаты теории особенностей, к счастью, не зависят от мрачной мистики теории катастроф. Но и в теории особенностей, как и во всей математике, есть нечто таинственное: это удивительные совпадения и связи между далекими на первый взгляд предметами и теориями.
Одним из примеров такого совпадения, остающегося загадочным (хотя кое-что и понято), является так называемая A, D, Е-классификация. Она встречается в таких разных отделах математики, как, например, теории критических точек функций, алгебр Ли, категорий линейных пространств, каустик, волновых фронтов, правильных многогранников в трехмерном пространстве и кристаллографических групп, порожденных отражениями.
Общим во всех этих случаях является требование простоты, или отсутствия модулей. Простота означает следующее. Каждая классификация есть разбиение некоторого пространства объектов на классы. Объект называется простым, если все близкие к нему объекты принадлежат конечному набору классов.
Пример 1. Назовем два набора проходящих через точку 0 на плоскости прямых эквивалентными, если один из них переходит в другой при линейном преобразовании (х, у) → (ах + by, сх + dy). Любой набор трех прямых прост (любой набор трех различных прямых эквивалентен набору х = 0, у = 0, х + у = 0). Любой набор четырех проходящих через 0 прямых не прост (докажите!).
Пример 2. Будем классифицировать критические точки (комплексных) гладких функций, относя функции в один класс, если они сводятся одна к другой гладкой (комплексной) локальной заменой переменных. Список простых особенностей (скажем, для функций трех переменных) состоит из двух бесконечных серий и трех исключительных особенностей:
Аk = х2 + у2 + zk+1, k ≥ 1;
Dk = х2 + y2z + zk-1, к ≥ 4;
Е6 = x2 + у3 + z4,
Е7 = x2 + у3 + yz3,
Е8 = х2 + у3 + z5.
Пример 3. Колчаном называется набор точек и соединяющих их стрелок. Если каждой точке сопоставлено линейное пространство (точка, прямая, плоскость,...), а каждой стрелке — линейное отображение (соответствующего началу стрелки пространства в соответствующее концу), то говорят, что задано представление колчана. Два представления называются эквивалентными, если одно переходит в другое при подходящих линейных преобразованиях пространств.
Колчан на рис. 82 слева прост, справа непрост (см. пример 1).
Рис. 82. Простой и непростой колчаны
Оказывается, все связные простые колчаны получаются произвольной расстановкой стрелок на изображенных на рис. 83 диаграммах Дынкина, образующих две бесконечные серии и три исключительные диаграммы.
Простые особенности каустик и волновых фронтов также образуют две бесконечные серии Аk и Dk и три исключительные особенности Еk (начальные члены серий изображены на рис. 34 — 45).
Рис. 83. Диаграммы Дынкина, определяющие простые колчаны
Группы симметрий правильных многогранников в трехмерном пространстве также образуют две бесконечные серии и три исключения (исключения — группы симметрий тетраэдра (Е6), октаэдра (Е7) и икосаэдра (Е8), серии — группы правильного многоугольника и правильного диэдра, т. е. двустороннего многоугольника с окрашенными в разные или одинаковые цвета гранями).
На первый взгляд, функции, колчаны, каустики, фронты и правильные многогранники не связаны между собой. На самом деле соответственные объекты не случайно обозначены одинаково: например, из икосаэдра можно построить функцию х2 + у3 + z5, а из нее — диаграмму Е8, а также каустику и волновой фронт того же имени.