Легко проверяемым свойствам одного из соответствующих друг другу объектов соответствуют не обязательно очевидные свойства других. Таким образом, связи между всеми А, D, Е-классификациями используются для одновременного изучения всех простых объектов, несмотря на то, что происхождение многих из них (например, связей между функциями и колчанами) остается необъясненным проявлением загадочного единства всего сущего.
По словам поэта:
Описание в терминах теории особенностей было найдено в 1983 г. для всех групп Кокстера, порожденных отражениями в евклидовых пространствах, включая некристаллографические, вроде Н3 и Н4.
Группы Вk, Сk и F4 связаны с краевыми особенностями функций (1978). Катастрофисты, кажется, все ещkkе не заметили связей теории краевых особенностей с простейшими (и важнейшими) случаями так называемой теории несовершенных бифуркаций. Более сложные случаи последней связаны с теорией Горюнова проектирований полных пересечений, которая является далеким обобщением теории краевых особенностей. В теории Горюнова, в частности, исключительная группа F4 оказывается родоначальником целого семейства особенностей Fk, k ≥ 4.
Геометрическая интерпретация каустики F4 найдена И. Г. Щербак. Рассмотрим поверхность с краем в обычном трехмерном евклидовом пространстве. Каустика поверхности с краем состоит из трех поверхностей: фокального множества исходной поверхности (образованного ее центрами кривизны), фокального множества граничной кривой (являющегося огибающей семейства нормальных плоскостей) и поверхности, составленной из нормалей к исходной поверхности в граничных точках. Для поверхностей с краем общего положения в отдельных точках край касается направления главной кривизны. В окрестности фокальной точки на нормали к поверхности, проведенной в такой точке края, каустика поверхности локально диффеоморфна каустике группы F4 (рис. 84).
Н3, группа симметрий икосаэдра, связана с перестройками эвольвент плоской кривой вблизи ее точки перегиба. В соответствующей плоской задаче об обходе препятствий график многозначной функции времени диффеоморфен многообразию нерегулярных орбит группы Н3; он диффеоморфен также объединению касательных к кривой х = t, у = t3, z = (О. В. Ляшко, О. П. Щербак). В задаче об обходе препятствия в трехмерном пространстве то же многообразие описывает особенность фронта в некоторых точках на поверхности препятствия.
Н4 — это группа симметрий правильного 600-гранника в четырехмерном евклидовом пространстве. Чтобы описать этот многогранник, начнем с группы вращений икосаэдра. При двулистном накрытии SU(2) → SO(3) эта группа из 60 вращений накрывается "бинарной группой икосаэдра" из 120 элементов. Группа SU(2) естественно изометрична трехмерной сфере, и 120 элементов бинарной группы образуют набор вершин искомого правильного многогранника в четырехмерном пространстве.
Рис. 84. Каустика группы F4 — типичная особенность фокального множества поверхности с краем
Рассмотрим теперь задачу об обходе препятствия в трехмерном пространстве. График (многозначной) функции времени является гиперповерхностью в четырехмерном пространстве-времени. Для задачи об обходе препятствия общего положения эта гиперповерхность локально диффеоморфна многообразию нерегулярных орбит группы Н4 в некоторой точке. А именно, нужная точка лежит на касательной к геодезической на поверхности препятствия, имеющей в параболической точке касания асимптотическое для поверхности направление (О. П. Щербак, 1984).
Добавление. Предшественники теории катастроф
Сначала мысль, воплощена
В поэму сжатую поэта,
Как дева юная, темна
Для невнимательного света;
Потом, осмелившись, она
Уже увертлива, речиста,
Со всех сторон своих видна,
Как искушенная жена
В свободной прозе романиста;
Болтунья старая, затем
Она, подъемля крик нахальный,
Плодит в полемике журнальной
Давно уж ведомое всем.
Не претендуя на полноту, я приведу здесь несколько ярких работ, авторы которых рассматривали особенности, бифуркации и катастрофы в системах общего положения, возникающих в различных областях знания.