Выбрать главу

16. Предположим, что все критические точки гладкого отображения сферы на плоскость — складки и сборки и что число областей на сфере, где якобиан отображения положителен, равно а, а где он отрицателен — b. Докажите, что число сборок не меньше, чем 2 | а — b |.

17. Сопоставим каждому вектору нормали к эллипсу его конец. Докажите, что построенное отображение цилиндра на плоскость имеет четыре точки сборки.

18. Если заменить в задаче 17 эллипс несамопересекающейся кривой общего положения, то число точек сборки соответствующего отображения цилиндра на плоскость не меньше четырех.

К разделу 3

19. Рассмотрим на эллипсе функцию "расстояние от точки эллипса до фиксированной точки плоскости", Критические точки таких функций образуют поверхность в трехмерном многообразии — прямом произведении эллипса на плоскость. Сколько сборок имеет проектирование этой поверхности на плоскость? Как выглядит множество критических значений проектирования?

20. Рассмотрим в пространстве функций на окружности множество всех функций, имеющих кратные критические значения. Лежит ли эта гиперповерхность в пространстве функций односторонне или двусторонне (т. е. можно ли ее снабдить трансверсальным направлением, меняющимся непрерывно вплоть до точек самопересечения и граничных точек)?

К разделу 4

21. Рассмотрим параболический цилиндр, опирающийся образующей прямой на горизонтальную плоскость. При каких положениях центра тяжести цилиндра над точкой касания положение равновесия устойчиво, а при каких — нет? Исследуйте особенности границы области устойчивости.

22. Нарисуйте график функции

f (u, υ) = min (x4 + uх2 + υx).

К разделу 5

23. При каких значениях параметров теряет устойчивость положение равновесия системы х — х (а + bх + cy), y = y(d + ex fy), для которого ху ≠ 0? Как выглядят фазовые кривые при этих значениях параметров?

24. Рассмотрим гладко зависящее от одного параметра векторное поле на прямой. Докажите, что гладкой заменой параметра и гладкой заменой координаты на прямой, гладко зависящей от параметра, такое поле общего положения приводится (в окрестности бифурцирующей особой точки) к полю, определяющему эволюционную систему х = х2 + а + f (а) х3, где f — гладкая функция, а — параметр (в аналитическом случае все замены можно сделать аналитическими).

25. Исследуйте поверхность равновесий зависящего от двух параметров семейства уравнений х = -х3 + ах + b и особенности ее проектирования на плоскость параметров. Какая часть поверхности равновесий соответствует устойчивым положениям равновесия? Исследуйте поведение фазовой точки при медленном изменении параметров а (t), b (t).

26. Составьте однопараметрическое семейство векторных полей на прямой, соответствующее бифуркациям рис. 13.

К разделу 6

27. Мягко или жестко теряет устойчивость положение равновесия системы z = (iω + a) z + Cz | z |2 при прохождении вещественного параметра а через нуль? Сравните результат с рис. 16.

28. Задайте формулами бифуркацию рис. 21 (компоненты поля — многочлены степени 5).

29. Исследуйте потерю устойчивости цикла z = 0, | ω | = 1 системы

z = (а — 1 + i/2) z + (а + 1)zω ± ω (z + zω)3,

w = iω + ω( 1 — | ω |2)

при прохождении параметра а через нуль. Найдите приближенно ответвляющийся двукратный цикл и исследуйте его устойчивость. Сравните результаты с рис. 22.

30. Исследуйте бифуркации фазового портрета системы, описывающей резонанс p/q, q ≥ 5, z = εz + z | z |2 A (| z |2) + zq-1 при обходе малого комплексного числа ε вокруг нуля (А — комплексная функция общего положения). Сравните результаты с рис. 23,

31. Исследуйте бифуркации фазового портрета системы, описывающей резонанс 1:3, z = εz + Az | z |2 + z2 при обходе комплексного параметра ε вокруг нуля (А — комплексное число общего положения).

32. Исследуйте бифуркации фазового портрета системы, описывающей резонанс 1:4, z = εz + Az | z |2 + z3, при обходе комплексного параметра ε вокруг нуля (на плоскости комплексного переменного А известно 48 областей, различающихся цепочками бифуркаций но не доказано даже, что число разных устойчивых цепочек конечно).

33. Исследовать затягивание потери устойчивости в системе z = (i + a) z — z | z |2 + b при медленном изменении параметров а = εt, b =cεt.

К разделу 7

34. Найти границу устойчивости семейства уравнений х + ах + bх = 0 на плоскости вещественных параметров (а, b).

35. Доказать, что граница устойчивости семейства уравнений х + ах + bх + сх = 0 диффеоморфна поверхности ω2 = u2υ2, u ≥ 0, υ ≥ 0.