56. Рассмотрим N частиц в единичном кубе и окружим каждую из них шаром радиуса r. При каком минимальном r эти шары образуют связную цепь диаметра единица? Покажите, что радиус убывает как C/N для распределений частиц вдоль линий, как C/N1/2 для распределений вдоль поверхностей, как C/N3/2 для пространственных распределений (вычисляемая таким способом "размерность" крупномасштабного распределения галактик оказывается лежащей между 1 и 2).
К разделу 10
57. Нарисуйте множество негладкости функции
F (у) = min (min (х4 + y1x2 + y2), у3)
и сравните с рис. 53.
58. Нарисуйте перестройку линий негладкости функции F (y1, у2, у3) = min (y1, y2, у1 + у2), заданной в трехмерном пространстве-времени, на изохронах t = const, для функции времени t = у1 + у2 ± у23 и сравните с рис. 53.
59. Докажите,, что особенности поверхностей уровня общего положения функций максимума типичных n- параметрических семейств функций такие же, как особенности графиков функций максимума n — 1-параметрических семейств общего положения (причем множества меньших значений соответствуют надграфикам). В этой ситуации "хорошие" значения параметров те, в которых функция максимума меньше фиксированной константы (а "хорошие" значения константы — те, которые больше максимума),
К разделу 11
60. Рассмотрим уравнение х + kх ± х = 0.
Определить, какие значения к отвечают сложенным фокусам, какие — сложенным узлам и какие — сложенным седлам на плоскости (х, Е = х2 + х2),
61. Найти поверхность, асимптотические линии которой образуют локально систему интегральных кривых сложенного фокуса (узла, седла).
62. Докажите, что интегральные кривые сложенного седла, соответствующие лежащим по одну сторону от складки сепаратрисам, подходят к особой точке с противоположных сторон, а интегральные кривые сложенного узла, соответствующие лежащим по одну сторону от складки выделенным фазовым кривым узла, подходят к особой точке с одной стороны,
63. Рассмотрим k-параметрическое семейство гладких гиперповерхностей в n-мерном линейном пространстве, снабженном проекцией на n — 1-мерное подпространство. Насколько негладким может оказаться видимый контур, если проектируемая поверхность выпукла, а семейство — общего положения?
64. Найти число модулей особенностей выпуклых оболочек типичных гладких поверхностей в четырехмерном пространстве и типичных гладких подмногообразий размерности 3 в пятимерном пространстве.
К разделу 12
65. Плоская кривая, двойственная к кривой у = х2 + х5/2, диффеоморфна исходной кривой, а двойственная к диффеоморфной ей кривой у = х5/2 — нет.
66. Кривая, двойственная к типичной кривой с особенностью степени 5/2, имеет подобную же особенность.
67. Число (комплексных) особых точек типа 7 (см. рис. 64) на типичной алгебраической поверхности достаточно большой степени d равно 2d (d — 2) (11d — 24), а типа 5 — 5d (d — 4) (7d — 12).
68. Когда поверхность уровня типичной функции трех переменных приближается к поверхности критического уровня, в критической точке исчезают 24 (комплексные) точки типа 7 (рис, 64).
К разделу 13
69. Эвольвента плоской кривой, проходящая через обыкновенную точку перегиба кривой, имеет в ней особенность типа 5/3.
70. Нарисуйте эвольвенты кубической параболы у = х3.
71. Нарисуйте график (трехзначной) функции времени вблизи точки кубического перегиба ограничивающей препятствие кривой на плоскости.
72. Нарисуйте поверхность, образованную в трехмерном пространстве линейных элементов на плоскости элементами, касательными к эвольвентам плоской кривой, вблизи точки (кубического) перегиба этой кривой. Какие особенности имеет эта поверхность и какие — ее проектирование на плоскость (сопоставляющее каждому линейному элементу точку его приложения)?
73. Рассмотрим на поверхности препятствия функцию, равную сумме расстояния до цели (по прямой) и расстояния до некоторой начальной точки вдоль поверхности препятствия. Докажите, что кратности критических точек этой функции четны.
74. Уравнения С = ∫x0(t3 + At + B)2 dt, x3 + Ax + В = 0, определяют в пространстве с координатами (А, В, С) поверхность. Нарисуйте эту поверхность и исследуйте ее особенности (она локально диффеоморфна фронту пространственной задачи об обходе препятствия в точке, соответствующей сборке гауссова отображения пучка, и ее ребро возврата степени 5/2 имеет полукубическую точку возврата в начале координат).