Выбрать главу

На рис. 15 видно, что перестройка, в сущности, одномерная: вдоль оси абсцисс происходят те же явления, что на оси х на рис. 13, а вдоль оси ординат перестройки нет вовсе. Таким образом, перестройка через седло — узел получается из одномерной перестройки "надстраиванием" оси ординат. Оказывается, вообще все перестройки положений равновесия в общих однопараметрических системах получаются из одномерных перестроек аналогичным надстраиванием.

Рис. 15. Седло-узел: типичная локальная бифуркация в одно- параметрическом семействе

Если устойчивое положение равновесия описывает установившийся режим в какой-либо реальной системе (скажем, экономической, экологической или химической), то при его слиянии с неустойчивым положением равновесия система должна совершить скачок, перескочив на совершенно другой режим: при изменении параметра равновесное состояние в рассматриваемой окрестности исчезает. Скачки этого рода и привели к термину "теория катастроф".

6. Потеря устойчивости равновесных и автоколебательных режимов

Потеря устойчивости состояния равновесия при изменении параметра не обязательно связана с бифуркацией самого состояния равновесия: оно может терять устойчивость не только сталкиваясь с другим, но и самостоятельно.

Соответствующая перестройка фазового портрета на плоскости изображена на рис. 16. Возможны два варианта.

Рис. 16. Бифуркация рождения цикла

А. При изменении параметра из положения равновесия рождается предельный цикл (радиуса порядка √ε, когда значение параметра отличается от бифуркационного на ε). Устойчивость равновесия переходит к циклу, само же равновесие становится неустойчивым.

Б. В положении равновесия умирает неустойчивый предельный цикл; область притяжения положения равновесия уменьшается с ним до нуля, после чего цикл исчезает, а его неустойчивость передается равновесному состоянию.

А. Пуанкаре заметил, а А. А. Андронов и его ученики еще до войны (в 1939 г.) доказали, что, кроме описанной выше (п. 5) потери устойчивости положений равновесия сливающихся с неустойчивыми, и только что описанных способов потери устойчивости типа А или Б в общих однопараметрических семействах систем с двухмерным фазовым пространством никаких иных видов потери устойчивости не встречается. Позже было доказано, что и в системах с фазовым пространством большей размерности потеря устойчивости положений равновесия при изменении одного параметра происходит каким-либо из описанных выше способов (по направлениям всех дополнительных осей координат при изменении параметра равновесие остается притягивающим).

Если наше положение равновесия — установившийся режим в реальной системе, то при изменении параметра в случаях А и Б наблюдаются следующие явления.

А. После потери устойчивости равновесия установившимся режимом оказывается колебательный периодический режим (рис. 17); амплитуда колебаний пропорциональная квадратному корню из закритичности (отличия параметра от критического значения, при котором равновесие теряет устойчивость).

Этот вид потери устойчивости называется мягкой потерей устойчивости, так как устанавливающийся колебательный режим при малой закритичности мало отличается от состояния равновесия.

Рис. 17. Мягкая потеря устойчивости равновесия

Б. Перед тем как установившийся режим теряет устойчивость, область притяжения этого режима становится очень малой, и всегда присутствующие случайные возмущения выбрасывают систему из этой области еще до того, как область притяжения полностью исчезает.

Рис. 18. Жесткая потеря устойчивости равновесия

Этот вид потери устойчивости называется жесткой потерей устойчивости. При этом система уходит со стационарного режима скачком (см. рис. 18) и перескакивает на иной режим движения. Этот режим может быть другим устойчивым стационарным режимом, или устойчивыми колебаниями, или более сложным движением.

Установившиеся режимы движения получили в последние годы название аттракторов, так как они "притягивают" соседние режимы (переходные процессы), [Аттрактор, т. е. притягатель, — это притягивающее множество в фазовом пространстве. Аттракторы, отличные от состояний равновесий и строго периодических колебаний, получили название странных аттракторов и связываются с проблемой турбулентности.]