Существование аттракторов с экспоненциально расходящимися фазовыми кривыми на них и устойчивость такого рода явлений были установлены в самом начале шестидесятых годов в работах С. Смейла, Д. В. Аносова и Я. Г. Синая по структурной устойчивости динамических систем.
Независимо от этих теоретических работ метеоролог Лоренц в 1963 г. описал наблюдавшийся им в численных экспериментах по моделированию конвекции аттрактор в трехмерном фазовом пространстве с разбегающимися по нему в разные стороны фазовыми кривыми (рис. 19) и указал на связь этого явления с турбулентностью.
Рис. 19. Хаотический аттрактор
В работах Аносова и Синая экспоненциальное разбегание было установлено, в частности, для движения материальной точки по поверхности отрицательной кривизны (пример такой поверхности — седло). Первые применения теории экспоненциального разбегания к изучению гидродинамической устойчивости опубликованы в 1966 г.
Движение жидкости можно описать как движение материальной точки по искривленной бесконечномерной поверхности. Кривизна этой поверхности по многим направлениям отрицательна, что приводит к быстрому разбеганию траекторий, т. е. к плохой предсказуемости течения по начальным условиям. В частности, из этого вытекает практическая невозможность долгосрочного динамического прогноза погоды: для предсказания всего на 1 — 2 месяца вперед нужно знать начальные условия с погрешностью 10-5 от погрешности предсказания.
Вернемся, однако, к режиму, установившемуся после потери устойчивости равновесного состояния, и предположим, что этот режим — странный аттрактор (т. е. не равновесие и не предельный цикл).
Переход системы на такой режим означает, что в ней наблюдаются сложные непериодические колебания, детали которых очень чувствительны к малому изменению начальных условий, в то время как усредненные характеристики режима устойчивы и не зависят от начального условия (при его изменении в некоторой области). Экспериментатор, наблюдающий за движением такой системы, назвал бы его турбулентным. По-видимому, неупорядоченные движения жидкости, наблюдаемые при потере устойчивости ламинарного течения с увеличением числа Рейнольдса (т. е. с уменьшением вязкости), математически описываются именно такими сложными аттракторами в фазовом пространстве жидкости. Размерность этого аттрактора, по-видимому, конечна при любом числе Рейнольдса (для двухмерных течений жидкости Ю. С. Ильяшенко, М. И. Вишик и А. В. Бабин недавно получили оценку этой размерности сверху величиной порядка Rе4), но стремится к бесконечности при Re → ∞.
Рис. 20. Сценарий хаотизации
Переход от устойчивого состояния равновесия процесса ("ламинарного течения жидкости") к странному аттрактору ("турбулентности") может совершаться как скачком (при жесткой или катастрофической потере устойчивости), так и после мягкой потери устойчивости (рис. 20). В последнем случае родившийся цикл сам теряет устойчивость. Потеря устойчивости цикла в общем однопараметрическом семействе систем возможна несколькими способами: 1) столкновение с неустойчивым циклом (рис. 21), 2) удвоение (рис. 22), 3) рождение или смерть тора (рис. 23) (в терминологии Андронова: с цикла слезает шкура). Детали последних процессов зависят от резонансов между частотами движения вдоль меридиана тора и вдоль его оси, т. е. от того, будет ли отношение этих частот рациональным или иррациональным числом. Интересно, что рациональные числа со знаменателем 5 и больше ведут себя практически как иррациональные.
Рис. 21. Гибель аттрактора-цикла
Поведение фазовых кривых, близких к циклу, можно приближенно описывать при помощи эволюционнсго процесса, для которого цикл является положением равновесия. Возникающие таким образом приближенные системы на сегодняшний день исследованы для всех случаев, кроме случаев, близких к сильному резонансу с отношением частот 1 : 4 (Р. И. Богданов, Э. И. Хорозов). На рис. 24 изображены перестройки семейства фазовых кривых приближенной системы, соответствующие перестройкам расположения фазовых кривых в окрестности цикла; предполагается, что потеря устойчивости происходит вблизи резонанса 1 : 3. На рис. 25 изображена одна из возможных последовательностей событий вблизи резонанса 1 : 4. Основные результаты об этом резонансе получены не строгими математическими рассуждениями, а комбинированием догадок и вычислительных экспериментов на ЭВМ (Ф. С. Березовская и А. И. Хибник, А. И. Нейштадт).