Выбрать главу

Из основного уравнения эволюции (21) и условия (22), приняв во внимание монотонно возрастающий характер соответствующих функций, можно получить новое требование

    ?Хiэ = min,       (23)

которое говорит о том, что разница между всеми основными характеристиками двух соседних явлений эволюционного ряда должна быть равна минимально возможной величине. Например, это относится к количеству и качеству вещества и количеству и качеству его поведения, включая явление взаимодействия. При этом решающее значение имеют изменения количества вещества (требование (22)), изменения же других характеристик являются следствием изменений экстенсора.

 Попутно отметим, что из общего равенства (22) в качестве наипростейшего частного случая вытекают прежние выражения (17) и (18), в которых величина  N1  представляет собой самую первую минимальную разность (скачок)  ?N1э , отсчитываемую от некоего абсолютного нуля, абсолютного ничто. Поэтому равенства (17) и (18) фактически характеризуют не только конечный шаг на пути анализа, но также и изначальный шаг на пути всякой эволюции; этому шагу предшествует ничто, небытие. Принципиально важно, что этот изначальный шаг является единым и общим для всех количественных уровней мироздания и всех эволюционных рядов на них.

 Как видим, для построения какого-либо конкретного эволюционного ряда требуется знать скачки  ?N1э , удовлетворяющие требованию (22). Но это требование, подобно основному уравнению эволюции (21), отличается слишком большой общностью. Конкретизировать и определить числом скачок  ?N1э , как и абсолютное значение N1 , мы еще не научились. Поэтому принцип минимальности придется далее расшифровать так, чтобы им можно было пользоваться на практике без знания разности  ?N1э .

 С аналогичной ситуацией мы столкнулись ранее при определении абсолютной величины  N1  с целью расчленения Вселенной. Чтобы справиться с возникшими новыми трудностями, придется искать обходные пути построения соответствующих эволюционных рядов усложняющихся форм явлений. Как и прежде, предстоит воспользоваться опытными фактами, что сделает рассуждения менее строгими. При этом вместо прежних правил проницаемости и отторжения придется сформулировать новые, тоже почерпнутые из наблюдений окружающей действительности. В свое время эти новые правила были установлены и получили наименование принципов (правил) своеобразия и вхождения [18, с.439; 21, с.23] [ТРП, стр.56-57].

5. Правила своеобразия и вхождения.

 Согласно правилу своеобразия, каждая данная форма явления своеобразна (специфична, неповторима и не сводима ни к какой другой форме), и этому своеобразию отвечают свои специфические законы, то есть свои наборы существенных характеристик и связывающих их функций. Переход от одной формы явлений к другой сопровождается изменением этих законов. Поэтому необходимым и достаточным признаком отнесения данного явления к той или иной конкретной форме служит подчинение его определенным специфическим законам, присущим исключительно данной форме.

 Следовательно, правило своеобразия точно отражает содержание условия (22) в той его части, где говорится о смене действующих законов, диктуемой определением понятия эволюции. Что касается минимальности эволюционного шага, то этому требованию, необходимому для построения какого-либо эволюционного ряда, приходится удовлетворять на опыте методом проб и ошибок, ибо числовых значений скачков  ?N1э  для различных конкретных форм явлений мы не знаем.

 В связи с этим правило своеобразия подкрепляется вторым правилом – вхождения, непосредственно продиктованным условиями реализации метода синтеза. Согласно правилу вхождения каждая сложная форма явления состоит, а следовательно, и может быть сконструирована из соответствующего набора более простых форм. Поэтому, например, наипростейшая форма явления всегда должна входить во все остальные, более сложные, без каких бы то ни было исключений.

 Из правила вхождения непосредственно следует, что любая сложная форма явления должна подчиняться всем законам, которые характерны для более простых форм, входящих в состав сложной. В этой связи также становится ясной особая важность наипростейшей формы явления и законов, которыми она руководствуется, ибо эта форма входит во все остальные. Следовательно, ее законы  обязательны для всех форм без исключения, то есть этим законам должно починяться все мироздание.

 Хотя каждая сложная форма явления состоит из определенного набора менее сложных, ее свойства не могут рассматриваться как простая сумма свойств этих менее сложных форм. В данном случае имеет место интереснейший пример сложения, когда сумма не равна совокупности слагаемых: составленная из простых сложная форма явления приобретает новые специфические свойства, которых не было у простых форм. Этот эффект незримо присутствует в правиле своеобразия, которое имеет в виду именно такие вновь возникшие специфические законы.

 В терминах системного подхода отмеченный эффект можно интерпретировать так: свойства системы не тождественны простой сумме свойств отдельных ее элементов (подсистем). Как видим, данный вывод из правил своеобразия и вхождения полностью совпадает с аналогичным выводом общей теории систем (ОТС), при этом понятие системы оказывается аналогичным понятию формы явления. Благодаря наличию обсуждаемого эффекта бессмысленно искать специфические законы функционирования сложного явления, например живого организма, на основе законов поведения молекул и атомов, из которых состоит этот организм [88].

 Весьма интересно, что синтез сложного явления из простых сопровождается еще одним замечательным эффектом, на который ранее не обращали внимания. Суть его заключается в том, что каждое из простых явлений, входящих в состав сложного, тоже изменяет свои свойства по сравнению со случаем, когда оно рассматривается изолировано, вне связи с другими простыми явлениями. Этот эффект изменения свойств каждого отдельного слагаемого суммы усиливается по мере усложнения всех явлений, участвующих в синтезе, и практически не проявляется у наипростейших явлений. В дальнейшем будут приведены соответствующие примеры.

 Правила своеобразия и вхождения предназначены для замены требований (22) и (23), когда не известны числовые значения скачков  ?N1э  и  ?Хiэ . На практике для построения какого-либо конкретного эволюционного ряда требуется найти из опыта законы, которым подчиняется большой набор разных по сложности явлений. Затем с помощью указанных правил эти явления выстраиваются в ряд так, чтобы каждое последующее явление подчинялось всем законам, характерным для предыдущих, но в тоже время располагало некоторыми своими собственными специфическими законами. Конечно, с первого захода это сделать нелегко, ибо можно что-то пропустить или, наоборот, учесть какие-либо лишние явления из чуждых рядов, однако после некоторых проб и ошибок каждое явление в конце концов становится на свое место.

 С помощью построенного таким образом ряда можно получить известные представления и о законах эволюции, то есть о законах перехода простых явлений в сложные. Этим представлениям можно придать количественное выражение, если определить явления ряда с помощью особых универсальных количественных мер  N , например, о которых говорится в гл. XXVIII . Такие попытки количественного выражения законов эволюции неизбежно будут способствовать и уточнению самого эволюционного ряда – по методу последовательных приближений. Однако это дело будущего, причем здесь открывается широкое поле деятельности для приложения и оценки границ применимости известных ОТС [ТРП, стр.58-60].

 6. Множественность эволюционных рядов.

 На основе изложенного подхода можно сделать некоторые далеко идущие выводы, имеющие важное теоретическое и практическое значение. Прежде всего сопоставление основного уравнения эволюции (21) и соотношений (16) показывает, что всего во Вселенной существует бесконечное множество форм явлений, которые различаются своими законами. Это объясняется тем, что общий интервал возможных изменений экстенсора  N1 = ?  содержит в себе бесконечное множество конечных отрезков  ?N1э . Все эти формы явлений группируются в эволюционные ряды, общее число которых тоже равно бесконечности. Каждому из таких конкретных рядов соответствует свой определенный закон эволюции.