The way that McAndrew’s father produced compressed matter remains pure science fiction. However, the “strong force” itself is an accepted part of modern physics, one of four basic known forces. The other three are gravity, the electromagnetic force, and the so-called “weak force” responsible for beta decay (emission of an electron or positron) in a nucleus. Although there is an adequate theory of the strong force, embodied in what is known as quantum chromodynamics, there is not the slightest hint in that theory of a method to make such a force either stronger or weaker than it is.
That’s all right. Five hundred years ago, magnetism was a curious property of certain materials, and no one knew what it was or had any way of generating it artificially. That had to wait until another strange phenomenon, electricity, had been explored, and experimenters such as Ampère, Oersted, and Faraday proved a link between electricity and magnetism. After that could come Maxwell, providing a unified theory for the two ideas that led to such practical devices as radios, dynamos, and powerful electromagnets.
It is not unreasonable to model the future on the past. A few hundred years from now, maybe we will be able to play our own games with all the known forces in the context of a unified theory, creating or modifying them as we choose. The weak force and the electromagnetic force have already been unified, work for which Glashow, Weinberg, and Salam were awarded the Nobel prize in physics in 1979.
I cannot resist a couple of personal reminiscences regarding the late Abdus Salam. He was my mathematics supervisor when I was a new undergraduate. His personal style of solving the problems that I and my supervision partner brought to him was unique. More often than not, he would look at the result to be derived and say, “Consider the following identity.” He would then write down a mathematical result which was far from obvious and usually new to us. Applying the identity certainly gave the required answer, but it didn’t help us much with our struggles.
Salam also had one endearing but disconcerting habit. He did not drink, but he must have been told that it was a tradition at Cambridge for tutors to serve sherry to their students on holiday occasions. He offered my partner and me sherry, an offer which we readily accepted. He then, unfamiliar with sherry as a drink, poured a large tumbler for each of us. We were too polite to refuse, or not to drink what we had been given, but we emerged from the supervision session much the worse for wear.
There is a throwaway comment in the ninth chronicle, that McAndrew was going off to hear a lecture entitled “Higher-dimensional complex manifolds and a new proof of the Riemann Conjecture.” This is a joke intended for mathematicians. In the nineteenth century, the great German mathematician Bernhard Riemann conjectured, but did not prove, that all the zeroes of a function known as the zeta function lay in a certain region of the complex plane. Riemann could not prove the result, and since then no one has managed to do so. It remains the most important unproven conjecture in mathematics, far more central to the field than the long-unproved but finally disposed-of Fermat Last Theorem.
People will keep chipping away at the Riemann conjecture, precisely because it is unproven. Just as we will keep pushing for better observing instruments, more rapid and sophisticated interplanetary or interstellar probes, quantum computers, artificial intelligence, higher temperature superconductors, faster-than-light travel, treatment for all known diseases, and human life extension.
The future in which McAndrew lives is fiction, but I believe that the science and technology of the real future will be far more surprising. There will indeed be ships, built by humans and their intellectual companions, computers, headed for the stars. They will not be powered by Kerr-Newman black holes, nor employ the McAndrew balanced drive, nor will they tap the resonance modes of the vacuum zero-point energy. They will not be multi-generation arks, nor will they find life-bearing planetoids in the Oort cloud, or rogue planets in the interstellar void. What they will be, and what they will find, will be far stranger and more interesting than that. And they will make today’s boldest science fiction conjectures appear timid, near-sighted, small-scale, and lacking in imagination.
Writing of this I wish, like Benjamin Franklin, that I could be pickled in a barrel for a couple of hundred years, to experience the surprising future that I’m sure lies ahead. If I can’t do that and don’t last that long, here is a message to my descendants two centuries from now: On my behalf, make the most of it.