Выбрать главу

A mind trained and dedicated to enhancing your personal mind, but useless to anyone else.

A mind capable of imagining a greater mind, but incapable of making it.

A mind capable of creating a greater mind, but not self-aware enough to imagine it.

A mind capable of successfully making a greater mind, once.

A mind capable of creating a greater mind that can create a yet greater mind, etc.

A mind with operational access to its source code, so it can routinely mess with its own processes.

A superlogic mind without emotion.

A general problem-solving mind, but without any self-awareness.

A self-aware mind, but without general problem solving.

A mind that takes a long time to develop and requires a protector mind until it matures.

An ultraslow mind spread over large physical distance that appears “invisible” to fast minds.

A mind capable of cloning itself exactly many times quickly.

A mind capable of cloning itself and remaining in unity with its clones.

A mind capable of immortality by migrating from platform to platform.

A rapid, dynamic mind capable of changing the process and character of its cognition.

A nanomind that is the smallest possible (size and energy profile) self-aware mind.

A mind specializing in scenario and prediction making.

A mind that never erases or forgets anything, including incorrect or false information.

A half-machine, half-animal symbiont mind.

A half-machine, half-human cyborg mind.

A mind using quantum computing whose logic is not understandable to us.

 • • •

If any of these imaginary minds are possible, it will be in the future beyond the next two decades. The point of this speculative list is to emphasize that all cognition is specialized. The types of artificial minds we are making now and will make in the coming century will be designed to perform specialized tasks, and usually tasks that are beyond what we can do. Our most important mechanical inventions are not machines that do what humans do better, but machines that can do things we can’t do at all. Our most important thinking machines will not be machines that can think what we think faster, better, but those that think what we can’t think.

To really solve the current grand mysteries of quantum gravity, dark energy, and dark matter, we’ll probably need other intelligences beside human. And the extremely complex harder questions that will come after those hard questions may require even more distant and complex intelligences. Indeed, we may need to invent intermediate intelligences that can help us design yet more rarefied intelligences that we could not design alone. We need ways to think different.

Today, many scientific discoveries require hundreds of human minds to solve, but in the near future there may be classes of problems so deep that they require hundreds of different species of minds to solve. This will take us to a cultural edge because it won’t be easy to accept the answers from an alien intelligence. We already see that reluctance in our difficulty in approving mathematical proofs done by computer. Some mathematical proofs have become so complex only computers are able to rigorously check every step, but these proofs are not accepted as “proof” by all mathematicians. The proofs are not understandable by humans alone so it is necessary to trust a cascade of algorithms, and this demands new skills in knowing when to trust these creations. Dealing with alien intelligences will require similar skills, and a further broadening of ourselves. An embedded AI will change how we do science. Really intelligent instruments will speed and alter our measurements; really huge sets of constant real-time data will speed and alter our model making; really smart documents will speed and alter our acceptance of when we “know” something. The scientific method is a way of knowing, but it has been based on how humans know. Once we add a new kind of intelligence into this method, science will have to know, and progress, according to the criteria of new minds. At that point everything changes.

AI could just as well stand for “alien intelligence.” We have no certainty we’ll contact extraterrestrial beings from one of the billion earthlike planets in the sky in the next 200 years, but we have almost 100 percent certainty that we’ll manufacture an alien intelligence by then. When we face these synthetic aliens, we’ll encounter the same benefits and challenges that we expect from contact with ET. They will force us to reevaluate our roles, our beliefs, our goals, our identity. What are humans for? I believe our first answer will be: Humans are for inventing new kinds of intelligences that biology could not evolve. Our job is to make machines that think different—to create alien intelligences. We should really call AIs “AAs,” for “artificial aliens.”

An AI will think about science like an alien, vastly different than any human scientist, thereby provoking us humans to think about science differently. Or to think about manufacturing materials differently. Or clothes. Or financial derivatives. Or any branch of science or art. The alienness of artificial intelligence will become more valuable to us than its speed or power.

Artificial intelligence will help us better understand what we mean by intelligence in the first place. In the past, we would have said only a superintelligent AI could drive a car or beat a human at Jeopardy! or recognize a billion faces. But once our computers did each of those things in the last few years, we considered that achievement obviously mechanical and hardly worth the label of true intelligence. We label it “machine learning.” Every achievement in AI redefines that success as “not AI.”

But we haven’t just been redefining what we mean by AI—we’ve been redefining what it means to be human. Over the past 60 years, as mechanical processes have replicated behaviors and talents we thought were unique to humans, we’ve had to change our minds about what sets us apart. As we invent more species of AI, we will be forced to surrender more of what is supposedly unique about humans. Each step of surrender—we are not the only mind that can play chess, fly a plane, make music, or invent a mathematical law—will be painful and sad. We’ll spend the next three decades—indeed, perhaps the next century—in a permanent identity crisis, continually asking ourselves what humans are good for. If we aren’t unique toolmakers, or artists, or moral ethicists, then what, if anything, makes us special? In the grandest irony of all, the greatest benefit of an everyday, utilitarian AI will not be increased productivity or an economics of abundance or a new way of doing science—although all those will happen. The greatest benefit of the arrival of artificial intelligence is that AIs will help define humanity. We need AIs to tell us who we are.

 • • •

The alien minds that we’ll pay the most attention to in the next few years are the ones we give bodies to. We call them robots. They too will come in all shapes, sizes, and configurations—manifesting in diverse species, so to speak. Some will roam like animals, but many will be immobile like plants or diffuse like a coral reef. Robots are already here, quietly. Very soon louder, smarter ones are inevitable. The disruption they cause will touch our core.

Imagine that seven out of ten working Americans got fired tomorrow. What would they all do?

It’s hard to believe you’d have an economy at all if you gave pink slips to more than half the labor force. But that—in slow motion—is what the industrial revolution did to the workforce of the early 19th century. Two hundred years ago, 70 percent of American workers lived on the farm. Today automation has eliminated all but 1 percent of their jobs, replacing them (and their work animals) with machines. But the displaced workers did not sit idle. Instead, automation created hundreds of millions of jobs in entirely new fields. Those who once farmed were now manning the legions of factories that churned out farm equipment, cars, and other industrial products. Since then, wave upon wave of new occupations have arrived—appliance repair person, offset printer, food chemist, photographer, web designer—each building on previous automation. Today, the vast majority of us are doing jobs that no farmer from the 1800s could have imagined.