Выбрать главу

It may be hard to believe, but before the end of this century, 70 percent of today’s occupations will likewise be replaced by automation—including the job you hold. In other words, robots are inevitable and job replacement is just a matter of time. This upheaval is being led by a second wave of automation, one that is centered on artificial cognition, cheap sensors, machine learning, and distributed smarts. This broad automation will touch all jobs, from manual labor to knowledge work.

First, machines will consolidate their gains in already automated industries. After robots finish replacing assembly line workers, they will replace the workers in warehouses. Speedy bots able to lift 150 pounds all day long will retrieve boxes, sort them, and load them onto trucks. Robots like this already work in Amazon’s warehouses. Fruit and vegetable picking will continue to be robotized until no humans pick outside of specialty farms. Pharmacies will feature a single pill-dispensing robot in the back while the pharmacists focus on patient consulting. In fact, prototype pill-dispensing robots are already up and running in hospitals in California. To date, they have not messed up a single prescription, something that cannot be said of any human pharmacist. Next, the more dexterous chores of cleaning in offices and schools will be taken over by late-night robots, starting with easy-to-do floors and windows and eventually advancing to toilets. The highway parts of long-haul trucking routes will be driven by robots embedded in truck cabs. By 2050 most truck drivers won’t be human. Since truck driving is currently the most common occupation in the U.S., this is a big deal.

All the while, robots will continue their migration into white-collar work. We already have artificial intelligence in many of our machines; we just don’t call it that. Witness one of Google’s newest computers that can write an accurate caption for any photo it is given. Pick a random photo from the web, and the computer will “look” at it, then caption it perfectly. It can keep correctly describing what’s going on in a series of photos as well as a human, but never tire. Google’s translation AI turns a phone into a personal translator. Speak English into the microphone and it immediately repeats what you said in understandable Chinese, or Russian, or Arabic, or dozens of other languages. Point the phone to the recipient and the app will instantly translate their reply. The machine translator does Turkish to Hindi, or French to Korean, etc. It can of course translate any text. High-level diplomatic translators won’t lose their jobs for a while, but day-to-day translating chores in business will all be better done by machines. In fact, any job dealing with reams of paperwork will be taken over by bots, including much of medicine. The rote tasks of any information-intensive job can be automated. It doesn’t matter if you are a doctor, translator, editor, lawyer, architect, reporter, or even programmer: The robot takeover will be epic.

We are already at the inflection point.

We have preconceptions about how an intelligent robot should look and act, and these can blind us to what is already happening around us. To demand that artificial intelligence be humanlike is the same flawed logic as demanding that artificial flying be birdlike, with flapping wings. Robots, too, will think different.

Consider Baxter, a revolutionary new workbot from Rethink Robotics. Designed by Rodney Brooks, the former MIT professor who invented the bestselling Roomba vacuum cleaner and its descendants, Baxter is an early example of a new class of industrial robots created to work alongside humans. Baxter does not look impressive. Sure, it’s got big strong arms and a flat-screen display like many industrial bots. And Baxter’s hands perform repetitive manual tasks, just as factory robots do. But it’s different in three significant ways.

First, it can look around and indicate where it is looking by shifting the cartoon eyes on its head. It can perceive humans working near it and avoid injuring them. And workers can see whether it sees them. Previous industrial robots couldn’t do this, which meant that working robots had to be physically segregated from humans. The typical factory robot today is imprisoned within a chain-link fence or caged in a glass case. They are simply too dangerous to be around, because they are oblivious to others. This isolation prevents such robots from working in a small shop, where isolation is not practical. Optimally, workers should be able to get materials to and from the robot or to tweak its controls by hand throughout the workday; isolation makes that difficult. Baxter, however, is aware. Using force-feedback technology to feel if it is colliding with a person or another bot, it is courteous. You can plug it into a wall socket in your garage and easily work right next to it.

Second, anyone can train Baxter. It is not as fast, strong, or precise as other industrial robots, but it is smarter. To train the bot, you simply grab its arms and guide them in the correct motions and sequence. It’s a kind of “watch me do this” routine. Baxter learns the procedure and then repeats it. Any worker is capable of this show and tell; you don’t even have to be literate. Previous workbots required highly educated engineers and crack programmers to write thousands of lines of code (and then debug them) in order to instruct the robot in the simplest change of task. The code has to be loaded in batch mode—i.e., in large, infrequent batches—because the robot cannot be reprogrammed while it is being used. Turns out the real cost of the typical industrial robot is not its hardware but its operation. Industrial robots cost $100,000-plus to purchase but can require four times that amount over a lifespan to program, train, and maintain. The costs pile up until the average lifetime bill for an industrial robot is half a million dollars or more.

The third difference, then, is that Baxter is cheap. Priced at $25,000, it’s in a different league compared with the $500,000 total bill of its predecessors. It is as if those established robots, with their batch-mode programming, are the mainframe computers of the robot world and Baxter is the first PC robot. It is likely to be dismissed as a hobbyist toy, missing key features like sub-millimeter precision. But as with the PC and unlike the ancient mainframe, the user can interact with it directly, immediately, without waiting for experts to mediate—and use it for nonserious, even frivolous things. It’s cheap enough that small-time manufacturers can afford one to package up their wares or custom paint their product or run their 3-D printing machine. Or you could staff up a factory that makes iPhones.

Baxter was invented in a century-old brick building near the Charles River in Boston. In 1895 the building was a manufacturing marvel in the very center of the new manufacturing world. It even generated its own electricity. For a hundred years the factories inside its walls changed the world around us. Now the capabilities of Baxter and the approaching cascade of superior robot workers spur inventor Brooks to speculate on how these robots will shift manufacturing in a disruption greater than the last revolution. Looking out his office window at the former industrial neighborhood, he says, “Right now we think of manufacturing as happening in China. But as manufacturing costs sink because of robots, the costs of transportation become a far greater factor than the cost of production. Nearby will be cheap. So we’ll get this network of locally franchised factories, where most things will be made within five miles of where they are needed.”

That may be true for making stuff, but a lot of remaining jobs for humans are service jobs. I ask Brooks to walk with me through a local McDonald’s and point out the jobs that his kind of robots can replace. He demurs and suggests it might be 30 years before robots will cook for us. “In a fast-food place you’re not doing the same task very long. You’re always changing things on the fly, so you need special solutions. We are not trying to sell a specific solution. We are building a general-purpose machine that other workers can set up themselves and work alongside.” And once we can cowork with robots right next to us, it’s inevitable that our tasks will bleed together, and soon our old work will become theirs—and our new work will become something we can hardly imagine.