To understand how robot replacement will happen, it’s useful to break down our relationship with robots into four categories.
1. Jobs Humans Can Do but Robots Can Do Even Better
Humans can weave cotton cloth with great effort, but automated looms make perfect cloth by the mile for a few cents. The only reason to buy handmade cloth today is because you want the imperfections humans introduce. There’s very little reason to want an imperfect car. We no longer value irregularities while traveling 70 miles per hour on a highway—so we figure that the fewer humans touching our car as it is being made, the better.
And yet for more complicated chores, we still tend to mistakenly believe computers and robots can’t be trusted. That’s why we’ve been slow to acknowledge how they’ve mastered some conceptual routines, in certain cases even surpassing their mastery of physical routines. A computerized brain known as autopilot can fly a 787 jet unaided for all but seven minutes of a typical flight. We place human pilots in the cockpit to fly those seven minutes and for “just in case” insurance, but the needed human pilot time is decreasing rapidly. In the 1990s, computerized mortgage appraisals replaced human appraisers wholesale. Much tax preparation has gone to computers, as well as routine X-ray analysis and pretrial evidence gathering—all once done by highly paid smart people. We’ve accepted utter reliability in robot manufacturing; soon we’ll accept the fact that robots can do it better in services and knowledge work too.
2. Jobs Humans Can’t Do but Robots Can
A trivial example: Humans have trouble making a single brass screw unassisted, but automation can produce a thousand exact ones per hour. Without automation, we could not make a single computer chip—a job that requires degrees of precision, control, and unwavering attention that our animal bodies don’t possess. Likewise no human—indeed no group of humans, no matter their education—can quickly search through all the web pages in the world to uncover the one page revealing the price of eggs in Kathmandu yesterday. Every time you click on the search button you are employing a robot to do something we as a species are unable to do alone.
While the displacement of formerly human jobs gets all the headlines, the greatest benefits bestowed by robots and automation come from their occupation of jobs we are unable to do. We don’t have the attention span to inspect every square millimeter of every CAT scan looking for cancer cells. We don’t have the millisecond reflexes needed to inflate molten glass into the shape of a bottle. We don’t have an infallible memory to keep track of every pitch in Major League baseball and calculate the probability of the next pitch in real time.
We aren’t giving “good jobs” to robots. Most of the time we are giving them jobs we could never do. Without them, these jobs would remain undone.
3. Jobs We Didn’t Know We Wanted Done
This is the greatest genius of the robot takeover: With the assistance of robots and computerized intelligence, we already can do things we never imagined doing 150 years ago. We can today remove a tumor in our gut through our navel, make a talking-picture video of our wedding, drive a cart on Mars, print a pattern on fabric that a friend mailed to us as a message through the air. We are doing, and are sometimes paid for doing, a million new activities that would have dazzled and shocked the farmers of 1800. These new accomplishments are not merely chores that were difficult before. Rather they are dreams created chiefly by the capabilities of the machines that can do them. They are jobs the machines make up.
Before we invented automobiles, air-conditioning, flat-screen video displays, and animated cartoons, no one living in ancient Rome wished they could watch pictures move while riding to Athens in climate-controlled comfort. I did that recently. One hundred years ago not a single citizen of China would have told you that they would rather buy a tiny glassy slab that allowed them to talk to faraway friends before they would buy indoor plumbing. But every day peasant farmers in China without plumbing purchase smartphones. Crafty AIs embedded in first-person shooter games have given millions of teenage boys the urge, the need, to become professional game designers—a dream that no boy in Victorian times ever had. In a very real way our inventions assign us our jobs. Each successful bit of automation generates new occupations—occupations we would not have fantasized about without the prompting of the automation.
To reiterate, the bulk of new tasks created by automation are tasks only other automation can handle. Now that we have search engines like Google, we set the servant upon a thousand new errands. Google, can you tell me where my phone is? Google, can you match the people suffering depression with the doctors selling pills? Google, can you predict when the next viral epidemic will erupt? Technology is indiscriminate this way, piling up possibilities and options for both humans and machines.
It is a safe bet that the highest-earning professions in the year 2050 will depend on automations and machines that have not been invented yet. That is, we can’t see these jobs from here, because we can’t yet see the machines and technologies that will make them possible. Robots create jobs that we did not even know we wanted done.
4. Jobs Only Humans Can Do—at First
The one thing humans can do that robots can’t (at least for a long while) is to decide what it is that humans want to do. This is not a trivial semantic trick; our desires are inspired by our previous inventions, making this a circular question.
When robots and automation do our most basic work, making it relatively easy for us to be fed, clothed, and sheltered, then we are free to ask, “What are humans for?” Industrialization did more than just extend the average human lifespan. It led a greater percentage of the population to decide that humans were meant to be ballerinas, full-time musicians, mathematicians, athletes, fashion designers, yoga masters, fan-fiction authors, and folks with one-of-a-kind titles on their business cards. With the help of our machines, we could take up these roles—but, of course, over time the machines will do these as well. We’ll then be empowered to dream up yet more answers to the question “What should we do?” It will be many generations before a robot can answer that.
This postindustrial economy will keep expanding because each person’s task (in part) will be to invent new things to do that will later become repetitive jobs for the robots. In the coming years robot-driven cars and trucks will become ubiquitous; this automation will spawn the new human occupation for former truck drivers of trip optimizer, a person who tweaks the traffic algorithms for optimal energy and time usage. Routine robosurgery will necessitate the new medical skills of keeping complex machines sterile. When automatic self-tracking of all your activities becomes the normal thing to do, a new breed of professional analysts will arise to help you make sense of the data. And of course we will need a whole army of robot nannies, dedicated to keeping your personal robots up and running. Each of these new vocations will in turn be taken over by automation later.
The real revolution erupts when everyone has personal workbots, the descendants of Baxter, at their beck and call. Imagine you are one of the 0.1 percent of people who still farm. You run a small organic farm with direct sales to your customers. You still have a job as a farmer, but robots do most of the actual farmwork. Your fleets of worker bots do all the outside work under the hot sun—weeding, pest control, and harvesting of produce—as directed by a very smart mesh of probes in the soil. Your new job as farmer is overseeing the farming system. One day your task might be to research which variety of heirloom tomato to plant; the next day to find out what your customers crave; the following day might be the time to update the information on your custom labels. The bots perform everything else that can be measured.