Recently I’ve had the opportunity to immerse myself in many prototype VR worlds. The best of these achieve an unshakeable sense of presence. The usual goal for increasing the degree of realism while you tell a story is to suspend disbelief. The goal for VR is not to suspend belief but to ratchet up belief—that you are somewhere else, and maybe even somebody else. Even if your intellectual mind can figure out you are really in a swivel chair, your embodied “I” will be convinced you are trudging through a swamp.
For the past decade, researchers inventing VR have settled on a standard demonstration of this overpowering presence. The visitor waiting for the demo stands in the center of an actual real nondescript waiting room. A pair of large dark goggles rest on a stool. The visitor dons the goggles and is immediately immersed into a virtual version of the same room she was standing in, with the same nondescript paneling and chairs. Not much is changed from her point of view. She can look around. The scene looks a little coarser through the goggles. But slowly the floor of the room begins to drop away, leaving the visitor standing on a plank that now floats over the receding floor 30 meters below. She is asked to walk out farther on the plank suspended high over a most realistic pit. The realism of the scene has been improved over the years so that by now the response of the visitor is very predictable. Either she cannot move her feet or she trembles as she inches forward, palms sweating.
When I was plunged into this scene myself, I reacted the same way. My mind reeled. My conscious mind kept whispering to me that I was in a dim room in the research labs of Stanford, but my primitive mind had hijacked my body. It was insisting that I was perched on a too narrow plank too high in the sky and that I must back off this plank immediately. Right now! My fear of heights kicked in. My knees began to shake. I was almost nauseous. Then I did something stupid. I decided to jump off the plank a little ways down onto a nearby ledge in the virtual world. But of course there was no “down,” so my real body dove onto the floor. But since I was actually standing on the floor, I was caught as I fell by two strong spotters in the real room, who were standing there precisely for this purpose. My reaction was completely normal; almost everyone falls.
Totally believable virtual reality is just about here. But I have been wrong about VR before. In 1989 a friend of a friend invited me to his lab in Redwood City, California, to see some gear he had invented. The lab turned out to be a couple of rooms in an office complex that were missing most of their desks. The walls were covered by a gallery of neoprene bodysuits embroidered with wires, large gloves sporting electronic components, and rows of duct-taped swimming goggles. The guy I’d gone to see, Jaron Lanier, sported shoulder-length blond dreadlocks. I wasn’t sure where this was going, but Jaron promised me a new experience, something he called virtual reality.
A few minutes later Lanier handed me one black glove, a dozen wires snaking from the fingers across the room to a standard desktop PC. I put it on. Lanier then placed a set of black goggles suspended by a web of straps onto my head. A thick black cable ran down my back from the headgear to his computer. Once my eyes focused inside the goggles, I was in. I was inside a place bathed in a diffuse light blue. I could see a cartoon version of my glove in the exact place my real hand felt it was. The virtual glove moved in sync with my hand. It was now “my” glove, and I felt—in my body, not just my head—very strongly that I was not in an office. Lanier himself then climbed into his own creation. Using his own helmet and glove, he appeared in his own world as a girl avatar, since the beauty of his system was that you could design your avatar to look like anything you wanted. Two of us now inhabited this first mutual dream space. In 1989.
Lanier popularized the term “virtual reality,” but he was not the only person working on immersive simulations at that time in the late 1980s. Several universities, a few startups, as well as the U.S. military had comparable prototypes, some with slightly different approaches for creating the phenomenon. I felt I had seen the future during my plunge into his microcosmos and wanted as many of my friends and fellow pundits as possible to experience what I had. With the help of the magazine I was then editing (Whole Earth Review), we organized the first public demo of every VR rig that existed in the fall of 1990. For 24 hours, from Saturday noon to Sunday noon, anyone who bought a ticket could stand in line to try out as many of the two dozen or so VR prototypes as they could. In the wee hours of the night I saw the psychedelic champion Tim Leary compare VR to LSD. The overwhelming impression spun by the buggy gear was total plausibility. These simulations were real. The views were coarse, the vision often stuttered, but the intended effect was inarguable: You went somewhere else. The next morning William Gibson, an up-and-coming science fiction writer who stayed up the night testing cyberspace for the first time, was asked what he thought about these new portals to synthetic worlds. He then first uttered his now famous remark: “The future is already here; it’s just not evenly distributed.”
VR was so uneven, however, it faded. The next steps never happened. All of us, myself included, thought VR technology would be ubiquitous in five years or so—at least by the year 2000. But no advances happened till 2015, 25 years after Jaron Lanier’s pioneering work. The particular problem with VR was that close enough was not close enough. For extended stays in VR longer than 10 minutes, the coarseness and stuttering motion caused nausea. The cost of gear sufficiently powerful, fast, and comfortable enough to overcome nausea was many tens of thousands of dollars. Therefore VR remained out of reach to consumers, and also out of reach for many startup developers who needed to jump-start the creation of VR content to spark the purchase of the gear.
Twenty-five years later a most unlikely savior appeared: phones! The runaway global success of the smartphone drove the quality of their tiny hi-res screens way up and their cost way down. The eye screens for a VR goggle are approximately the size and resolution of a smartphone screen, so today VR headsets are basically built out of cheap phone screen technology. At the same time, motion sensors in phones followed the same path of increasing performance and decreasing cost, until these motion sensors could be borrowed by VR displays to track head, hand, and body positions for very little. In fact, the first consumer VR models from Samsung and Google use a regular smartphone slipped into an empty head-mounted display unit. Put a Samsung Gear VR on and you look into a phone; your movements are tracked by the phone, so the phone sends you into an alternative world.
It’s not difficult to see how VR will soon triumph in movies of the future, particularly visceral genres like horror, erotic, or thrillers—where your gut is also caught up in the story. It’s also easy to imagine VR occupying a prime role in video games. No doubt hundreds of millions of avid players will eagerly don a suit, gloves, and helmet and then teleport to a far-away place to hide, shoot, kill, and explore, either solo or in tight bands of friends. Of course, the major funder of consumer VR development today is the game industry. But VR is much bigger than this.
• • •
Two benefits propel VR’s current rapid progress: presence and interaction. “Presence” is what sells VR. All the historical trends in cinema technology bend toward increased realism, starting from sound, to color, to 3-D, to faster, smoother frame rates. Those trends are now being accelerated inside VR. Week by week the resolution increases, the frame rate jumps, the contrast deepens, the color space widens, and the high-fidelity sound sharpens, all of it improving faster than it does on big screens. That is, VR is getting more “realistic” faster than movies are. Within a decade, when you look into a state-of-the-art virtual reality display, your eye will be fooled into thinking you are looking through a real window into a real world. It’ll be bright—no flicker, no visible pixels. You will feel this is absolutely for sure real. Except it isn’t.