It’s easy to understand why governments and militaries like robots and other unmanned systems for combat: They never tire, they never feel fear or emotion, they have superhuman capabilities and they always follow orders. As Singer points out, robots are uniquely suited to the roles that the military refers to as the three Ds (jobs that are dull, dirty or dangerous). The tactical advantages conferred by robots are constrained only by the limits of robotics manufacturers. They can build robots that withstand bullets, have perfect aim, recognize and disarm targets, and carry impossible loads in severe conditions of heat, cold or disorientation. Military robots have better endurance and faster reaction time than any soldier, and politicians will much more readily send them into battle than human troops. Most people agree that the introduction of robots into combat operations, whether on the ground, at sea or in the air, will ultimately produce fewer combat deaths, fewer civilian casualties and less collateral damage.
Already there are many forms of robots at work in American military operations. More than a decade ago, in 2002, iRobot, the company that invented the Roomba robotic vacuum cleaner, introduced a ground robot called the PackBot, a forty-two-pound machine with treads like a tank’s, cameras and a degree of autonomous functionality, that military units can equip to detect mines, sense chemical or biological weapons and investigate potential IEDs (improvised explosive devices) along the sides of roads or anywhere else.5 Another robotics manufacturer, Foster-Miller, makes a PackBot competitor called the TALON, as well as the first armed robot brought to battle: the Special Weapons Observation Reconnaissance Detection System, or SWORDS. And then there are the aerial drones. In addition to the now recognizable Predator drones, the U.S. military operates smaller versions (like the hand-launched Raven drone, used for surveillance) and larger ones (like the Reaper, which flies higher, faster and with a larger weapons payload than the Predator). An internal congressional report acquired by Wired magazine’s Danger Room blog in 2012 stated that drones now account for 31 percent of all military aircraft—up from 5 percent in 2005.
We spoke to a number of former and current Special Forces soldiers to gauge how they believed this progression of robotic technologies will affect combat operations in the next decades. Harry Wingo, a Googler and former Navy SEAL, spoke to the usefulness of using computers and “bots” instead of humans for surveillance, and of robots “taking point” in advancing through a field of fire or when clearing a building. In the next decade, he said, more “lethal kinetics”—operations involving fire—“will be handed over to bots, including those like room-clearing that require split-second parsing of targets.” Initially, the robots will be operated with “machine-assist,” meaning a soldier will direct the machine from a remote location, but eventually, Wingo believes, “the bots will identify and engage targets.” Since 2007, the U.S. military has deployed armed SWORDS robots that can semi-autonomously recognize and shoot human targets, though it is believed that they have not, as yet, been used in a lethal context.
Soldiers will not be left behind completely, and not all human functions will be automated. None of the robots in operation today operate fully autonomously—which is to say, without any human direction—and, as we’ll discuss later, there are important aspects of combat, like judgment, that robots will not be capable of exercising for many years to come. To better understand how technology will soon enhance the capabilities of human soldiers we asked a now inactive Navy SEAL, who, incidentally, participated in the Osama bin Laden raid in May 2011, what he anticipated for combat units in the future. First, he told us, he envisioned units equipped with highly sophisticated and secure tablet devices that will allow soldiers to tap into live video feeds from UAVs, download relevant intelligence analysis and maintain situational awareness of friendly troop movements. These devices will have unique live maps loaded with enough data about the surrounding environment—the historical significance of a street or building, the owners of every home, and the interior infrared heat movements captured by drones overhead—to provide soldiers with a much clearer sense of what to target and what to avoid.
Second, the clothes and gear that soldiers wear will change. Haptic technologies—this refers to touch and feeling—will produce uniforms that allow soldiers to communicate through pulses, sending out signals to one another that result in a light pinch or vibration in a particular part of the body. (For instance, a pinch on the right calf could indicate a helicopter is inbound.) Helmets will have better visibility and built-in communications, allowing commanders to see what the soldiers see and “backseat drive,” directing the soldiers remotely from the base. Camouflage will allow soldiers to change their uniform’s color, texture, pattern or scent. Uniforms might even be able to emit sounds to drown out noises soldiers want to hide—sounds of nature masking footsteps, for example. Lightweight and durable power sources will be integrated as well, so that none of the devices or wearable technologies will fail at crucial moments due to heat, water or distance from a charger. Soldiers will have the additional ability to destroy all of this technology remotely, so that capture or theft will not yield valuable intelligence secrets.
And, of course, wrapping all of this together will be a hefty layer of cybersecurity—more than any civilian would use—that enables instant data transmission within a cocoon of electronic protection. Without security, none of the advantages above will be worth the considerable cost that will be required to develop and deploy them.
Alas, military contractors’ procedures will hold back many of these developments. In the United States, the military-industrial complex is working on some of the initiatives mentioned above—DARPA has led the development of many of the robots now in operation—but it is by nature ill-equipped to handle innovation. Even DARPA, while relatively well funded, is predictably stalled by elaborate contracting structures and its position in the Department of Defense bureaucracy. The innovative edge that is the hallmark of the American technology sector is largely walled off from the country’s military by an anarchic and byzantine acquisitions system, and this represents a serious missed opportunity. Without reforms that allow military agencies and contractors to behave more like small private companies and start-ups (with maneuverability and the option to move quickly) the entire industry is likely to retrench rather than evolve in the face of fiscal austerity.
The military is well aware of the problems. As Singer told us, “It’s a big strategic question for them: How do they break out of this broken structure?” Big defense projects languish in the prototype stage, over budget and behind schedule, while today’s commercial technologies and products are conceived of, built and brought to market in volume in record time. For example, the Joint Tactical Radio System, which was supposed to be the military’s new Internet-like radio-communications network, was conceived of in 1997, then shut down in September 2012, only to have acquisitions functions transferred to the Army under what is now called the Joint Tactical Networking Center. By the time it was shut down as its own operation, it had cost billions of dollars and was still not fully deployed on the battlefield. “They just can’t afford that kind of process anymore,” Singer said.