Выбрать главу

Но, может быть, проще поворачивать не двигатели на крыле, а все крыло вместе с двигателями?

И эта возможность исследуется. Когда конвертоплан такого типа стоит на земле, его крыло повернуто так, что оно вместе с двигателями «смотрит» вверх. Только на значительной высоте крыло начинает медленно поворачиваться в горизонтальное положение. Двигатели при этом тянут самолет не только вверх, но и вперед. Наконец поворот закончен. Теперь самолет не отличишь от других, мчащихся в небе с большой скоростью..

На будущих пассажирских линиях, особенно местных, где зачастую нет больших аэродромов, будет курсировать много конвертопланов.

Можно не сомневаться, что они полюбятся пассажирам.

Но нельзя ли вообще не поворачивать ни самолет, ни его крыло, ни даже двигатели?

Оказывается, даже такая, на первый взгляд, невероятная возможность все же реальна. Ее открывают замечательные свойства несущего крыла. Правда, крыло в этом случае должно быть не простым, а специальным, высокомеханизированным.

Вернемся еще раз к физическим основам полета. Мы говорили уже о том, как влияет на подъемную силу наклонно движущейся пластины величина ее поверхности. Но, помимо поверхности, есть и другой фактор, сильно сказывающийся на величине подъемной силы, — это угол, который образует пластина к направлению движения, так называемый угол атаки. Нетрудно видеть, что с увеличением этого угла подъемная сила возрастает. Тот, кто запускал воздушный змей, хорошо это знает. Когда змей «задирается», становится круто к набегающему потоку, он рвется из рук. Внимательные наблюдатели могли заметить, как различаются положения самолета в полете и при посадке, — в последнем случае он сильно опускает хвост. Это делается именно для того, чтобы угол атаки крыла увеличился, возросла его подъемная сила, а посадочная скорость уменьшилась.

Однако увеличение угла атаки не всегда увеличивает подъемную силу. Стоит чуть-чуть превзойти этот угол, «передрать» самолет, как подъемная сила вдруг резко упадет. Предельный угол атаки называется критическим — он определяет кризис в обтекании крыла встречным потоком. Пока обтекание остается правильным и поток всюду прилегает к поверхности крыла, увеличение угла атаки приводит к тому, что поток сильнее отклоняется крылом вниз и подъемная сила растет. Но как только достигнут критический угол атаки, поток отрывается от крыла и подъемная сила резко падает. При посадке это грозит катастрофой.

Конструкторы самолетов и ученые издавна задумывались, нельзя ли увеличить подъемную силу крыла при одном и том же угле атаки? Нельзя ли искусственно задержать, отодвинуть срыв потока с крыла? Понятно, что это привело бы к уменьшению посадочной и взлетной скоростей, позволило бы уменьшить длину взлетно-посадочных полос, а также увеличить полезный груз на самолете и уменьшить потребную мощность двигателя.

Механизированное крыло.

Первым решением задачи и были «механизированные» крылья. Понятно, что крыло самолета можно считать движущейся в воздухе пластиной только условно. В действительности, конечно, оно представляет собой совсем не простую пластину, а имеет в поперечном сечении сложный профиль, так называемую авиационную дужку. От того, какой именно это профиль, очень сильно зависят аэродинамические характеристики крыла. В частности, хорошо известно, что более изогнутый профиль крыла создает и большую подъемную силу при том же угле атаки. Это и понятно — такое крыло сильнее отклоняет поток вниз. Но зато и сопротивление изогнутого крыла больше. Конечно, лучше всего было бы при взлете и посадке изгибать крыло побольше, а в горизонтальном полете с большой скоростью изогнутость уменьшать. Попытки создать такое «гибкое» крыло были, но успешными их назвать нельзя.

А что если попытаться сконструировать крыло так, чтобы оно состояло как бы из отдельных продольных частей- полос? Тогда можно было бы поворачивать эти части относительно друг друга, в результате чего общая кривизна профиля крыла изменялась бы. Так появились крылья, снабженные предкрылками и закрылками — перемещающимися частями, расположенными спереди и сзади крыла. В обычном полете эти части образуют одну поверхность с крылом, создавая сравнительно небольшую кривизну дужки, необходимую для горизонтального полета. Но вот самолет совершает посадку — предкрылки выходят из гнезд, закрылки поворачиваются, крыло становится как бы более изогнутым и — обычно — большим по площади. Такая «механизация» крыла позволила значительно улучшить взлетно-посадочные свойства самолетов. Понятно, что особенно большую роль играет механизированное крыло при создании самолетов короткого взлета и посадки, подобных «Пчелке».