Выбрать главу

Зная все это, вы можете без всяких трудов вычислить полное количество энергии, содержащейся в пространстве, окружающем электрон. Если предположить, что электрический заряд равномерно распределен по

поверхности электрона, то это количество равно g— TV

А если считать, что электрический заряд равномерно распределен по всему объему электрона, то полное ко-

5

личество энергии равно—-—, где qe — заряд электрона;

те — радиус электрона, иначе говоря, радиус некой шаровой поверхности, отделяющей то, что мы собираемся называть электроном, от того, что мы по тем или иным соображениям электроном не считаем. Оговоримся сразу: мы присвоили электрону шарообразную форму без малейших на то оснований. Но если даже это не так, если электрон больше похож на кубик или кольцо, то изменятся лишь коэффициенты, а полное количество энергии, распределенной в пространстве вокруг электрона, останется пропорциональным квадрату заряда, поделенному на некую величину, которую можно понимать как размер электрона.

Если имеется какое-то количество энергии, то, согласно знаменитой формуле Эйнштейна, которая сегодня не вызывает ни малейших сомнений, это количество энергии обладает массой. В частности, масса электрического поля, окружающего электрон, или, если вам по какой-либо причине не хочется произносить слово «поле», то масса, распределенная в пространстве, окружающем электрон, равна где с — скорость света; а — некоторый коэффициент (обычно 2/з или 3/5), зависящий от того, какой вы представляете себе форму электрона и как вы представляете себе распределение заряда внутри электрона. И вот теперь внимательно посмотрите на формулу

Во-первых, какими бы вы ни выбрали величины а и ге, электромагнитное поле всегда обладает массой. Сам электрон тоже обладает массой, что подтверждено огромным количеством опытов. Какая же часть массы электрона принадлежит собственно электрону, а какая часть — окружающему его полю? Ответ на это г вопрос зависит от того, какой мы представляем себе величину ге. Если г* относительно велико, можно считать, что большая часть (но не вся) массы электрона принадлежит собственно электрону, а меньшая ее часть — полю. Полагая форму электрона шарообразной с радиусом, равным примерно 1,7-10-13 см, мы приходим к интересному выводу. Сам по себе электрон вообще не обладает массой, а вся его масса, кстати сказать, равная 9,1-Ю-28 г, полностью распределена в окружающем пространстве. Конечно, вам не терпится задать вопрос: что же такое тогда электрон? Не станем, однако, торопиться — самое интересное нас ждет впереди.

Предположим, что электрон — шар, а радиус этого шара меньше, чем 1,7-10~13 см. Тогда масса электрического поля оказывается больше массы электрона. Если радиус электрона равен нулю, то масса электрона оказывается равной бесконечности. Бессмыслица? Не торопитесь с выводами. В том-то и дело, что об этом можно было бы и не говорить, если бы не одно «чрезвычайно досадное» обстоятельство. Большинство имеющихся на сегодня теоретических положений и опытных данных свидетельствует как раз о том, что электрон не имеет размеров — его радиус равен нулю. Известный физик, лауреат Нобелевской премии Ричард Фейнман писал по этому поводу:

«Мы вынуждены прийти к заключению, что представление, будто энергия сосредоточена в поле, не согласуется с предположением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а небольшие зарядовые распределения. Но можно говорить и обратное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о сохранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднв ниями. И их никогда еще не удавалось преодолеть; существуют они и по сей день».

Такова первая, но далеко не последняя трудность на нашем пути. К этому добавим еще кое-что. Когда вы строили систему из одноименных зарядов, они, будучи предоставленными самим себе, тут же разлетались. А вот электрон не разлетается. Никому никогда не приходилось наблюдать половинку или четвертушку электрона. Спрашивается, что удерживает заряд электрона от распадения на части? Если «внутри» у электрона какой-то твердый шарик, то как увязать это с предположением о точечных размерах? Ведь тогда получится бесконечно большая плотность материи.

Ну а что говорят об этом эксперименты? Опыты по взаимодействию протонов с электронами показали, что при расстояниях между ними, больших Ю-13 см, эти частицы ведут себя как точечные электрические заряды и подчиняются закону Кулона. А при меньших расстояниях все обстоит не так. При расстоянии порядка 10~и см взаимодействие ослабевает в 10 раз. Значит, либо электрон, либо протон — не точка, а заряд, распределенный в конечном объеме. Ученые склонны полагать, что таким свойством обладает именно протон. Кстати, из этих же опытов можно сделать и другой вывод: электрон проникает внутрь протона. Ставились и такие опыты, когда протоны пронизывались другими частицами насквозь Вывод однозначный: никакого твердого, монолитного вещества в природе не существует.